Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions

Development of the idea

Overall reaction of photosynthesis.

  • Basic products of photosynthesis
  • Evolution of the process
  • Light intensity and temperature
  • Carbon dioxide
  • Internal factors
  • Energy efficiency of photosynthesis
  • Structural features
  • Light absorption and energy transfer
  • The pathway of electrons
  • Evidence of two light reactions
  • Photosystems I and II
  • Quantum requirements
  • The process of photosynthesis: the conversion of light energy to ATP
  • Elucidation of the carbon pathway
  • Carboxylation
  • Isomerization/condensation/dismutation
  • Phosphorylation
  • Regulation of the cycle
  • Products of carbon reduction
  • Photorespiration
  • Carbon fixation in C 4 plants
  • Carbon fixation via crassulacean acid metabolism (CAM)
  • Differences in carbon fixation pathways
  • The molecular biology of photosynthesis

Photosynthesis

Why is photosynthesis important?

What is the basic formula for photosynthesis, which organisms can photosynthesize.

Leaves are silhouetted against an orange and yellow sky with twilight. (plants, petioles, nature)

photosynthesis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Khan Academy - Photosynthesis
  • Biology LibreTexts - Photosynthesis
  • University of Florida - Institute of Food and Agricultural Sciences - Photosynthesis
  • Milne Library - Inanimate Life - Photosynthesis
  • National Center for Biotechnology Information - Chloroplasts and Photosynthesis
  • Roger Williams University Pressbooks - Introduction to Molecular and Cell Biology - Photosynthesis
  • BCcampus Open Publishing - Concepts of Biology – 1st Canadian Edition - Overview of Photosynthesis
  • photosynthesis - Children's Encyclopedia (Ages 8-11)
  • photosynthesis - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

Photosynthesis

Photosynthesis is critical for the existence of the vast majority of life on Earth. It is the way in which virtually all energy in the biosphere becomes available to living things. As primary producers, photosynthetic organisms form the base of Earth’s food webs and are consumed directly or indirectly by all higher life-forms. Additionally, almost all the oxygen in the atmosphere is due to the process of photosynthesis. If photosynthesis ceased, there would soon be little food or other organic matter on Earth, most organisms would disappear, and Earth’s atmosphere would eventually become nearly devoid of gaseous oxygen.

The process of photosynthesis is commonly written as: 6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2 . This means that the reactants, six carbon dioxide molecules and six water molecules, are converted by light energy captured by chlorophyll (implied by the arrow) into a sugar molecule and six oxygen molecules, the products. The sugar is used by the organism, and the oxygen is released as a by-product.

The ability to photosynthesize is found in both eukaryotic and prokaryotic organisms. The most well-known examples are plants, as all but a very few parasitic or mycoheterotrophic species contain chlorophyll and produce their own food. Algae are the other dominant group of eukaryotic photosynthetic organisms. All algae, which include massive kelps and microscopic diatoms , are important primary producers.  Cyanobacteria and certain sulfur bacteria are photosynthetic prokaryotes, in whom photosynthesis evolved. No animals are thought to be independently capable of photosynthesis, though the emerald green sea slug can temporarily incorporate algae chloroplasts in its body for food production.

photosynthesis , the process by which green plants and certain other organisms transform light energy into chemical energy . During photosynthesis in green plants, light energy is captured and used to convert water , carbon dioxide , and minerals into oxygen and energy-rich organic compounds .

It would be impossible to overestimate the importance of photosynthesis in the maintenance of life on Earth . If photosynthesis ceased, there would soon be little food or other organic matter on Earth. Most organisms would disappear, and in time Earth’s atmosphere would become nearly devoid of gaseous oxygen. The only organisms able to exist under such conditions would be the chemosynthetic bacteria , which can utilize the chemical energy of certain inorganic compounds and thus are not dependent on the conversion of light energy.

How are plant cells different from animal cells?

Energy produced by photosynthesis carried out by plants millions of years ago is responsible for the fossil fuels (i.e., coal , oil , and gas ) that power industrial society . In past ages, green plants and small organisms that fed on plants increased faster than they were consumed, and their remains were deposited in Earth’s crust by sedimentation and other geological processes. There, protected from oxidation , these organic remains were slowly converted to fossil fuels. These fuels not only provide much of the energy used in factories, homes, and transportation but also serve as the raw material for plastics and other synthetic products. Unfortunately, modern civilization is using up in a few centuries the excess of photosynthetic production accumulated over millions of years. Consequently, the carbon dioxide that has been removed from the air to make carbohydrates in photosynthesis over millions of years is being returned at an incredibly rapid rate. The carbon dioxide concentration in Earth’s atmosphere is rising the fastest it ever has in Earth’s history, and this phenomenon is expected to have major implications on Earth’s climate .

Requirements for food, materials, and energy in a world where human population is rapidly growing have created a need to increase both the amount of photosynthesis and the efficiency of converting photosynthetic output into products useful to people. One response to those needs—the so-called Green Revolution , begun in the mid-20th century—achieved enormous improvements in agricultural yield through the use of chemical fertilizers , pest and plant- disease control, plant breeding , and mechanized tilling, harvesting, and crop processing. This effort limited severe famines to a few areas of the world despite rapid population growth , but it did not eliminate widespread malnutrition . Moreover, beginning in the early 1990s, the rate at which yields of major crops increased began to decline. This was especially true for rice in Asia. Rising costs associated with sustaining high rates of agricultural production, which required ever-increasing inputs of fertilizers and pesticides and constant development of new plant varieties, also became problematic for farmers in many countries.

Photosynthesis diagram showing how water, light, and carbon dioxide are absorbed by a plant and that oxygen and sugars are produced. Also show a person to illustrate the oxygen/carbon dioxide cycle between plants and animals.

A second agricultural revolution , based on plant genetic engineering , was forecast to lead to increases in plant productivity and thereby partially alleviate malnutrition. Since the 1970s, molecular biologists have possessed the means to alter a plant’s genetic material (deoxyribonucleic acid, or DNA ) with the aim of achieving improvements in disease and drought resistance, product yield and quality, frost hardiness, and other desirable properties. However, such traits are inherently complex, and the process of making changes to crop plants through genetic engineering has turned out to be more complicated than anticipated. In the future such genetic engineering may result in improvements in the process of photosynthesis, but by the first decades of the 21st century, it had yet to demonstrate that it could dramatically increase crop yields.

Another intriguing area in the study of photosynthesis has been the discovery that certain animals are able to convert light energy into chemical energy. The emerald green sea slug ( Elysia chlorotica ), for example, acquires genes and chloroplasts from Vaucheria litorea , an alga it consumes, giving it a limited ability to produce chlorophyll . When enough chloroplasts are assimilated , the slug may forgo the ingestion of food. The pea aphid ( Acyrthosiphon pisum ) can harness light to manufacture the energy-rich compound adenosine triphosphate (ATP); this ability has been linked to the aphid’s manufacture of carotenoid pigments.

General characteristics

photosynthesis short essay

The study of photosynthesis began in 1771 with observations made by the English clergyman and scientist Joseph Priestley . Priestley had burned a candle in a closed container until the air within the container could no longer support combustion . He then placed a sprig of mint plant in the container and discovered that after several days the mint had produced some substance (later recognized as oxygen) that enabled the confined air to again support combustion. In 1779 the Dutch physician Jan Ingenhousz expanded upon Priestley’s work, showing that the plant had to be exposed to light if the combustible substance (i.e., oxygen) was to be restored. He also demonstrated that this process required the presence of the green tissues of the plant.

In 1782 it was demonstrated that the combustion-supporting gas (oxygen) was formed at the expense of another gas, or “fixed air,” which had been identified the year before as carbon dioxide. Gas-exchange experiments in 1804 showed that the gain in weight of a plant grown in a carefully weighed pot resulted from the uptake of carbon, which came entirely from absorbed carbon dioxide, and water taken up by plant roots; the balance is oxygen, released back to the atmosphere. Almost half a century passed before the concept of chemical energy had developed sufficiently to permit the discovery (in 1845) that light energy from the sun is stored as chemical energy in products formed during photosynthesis.

Chemical equation.

This equation is merely a summary statement, for the process of photosynthesis actually involves numerous reactions catalyzed by enzymes (organic catalysts ). These reactions occur in two stages: the “light” stage, consisting of photochemical (i.e., light-capturing) reactions; and the “dark” stage, comprising chemical reactions controlled by enzymes . During the first stage, the energy of light is absorbed and used to drive a series of electron transfers, resulting in the synthesis of ATP and the electron-donor-reduced nicotine adenine dinucleotide phosphate (NADPH). During the dark stage, the ATP and NADPH formed in the light-capturing reactions are used to reduce carbon dioxide to organic carbon compounds. This assimilation of inorganic carbon into organic compounds is called carbon fixation.

Chemical equation.

Van Niel’s proposal was important because the popular (but incorrect) theory had been that oxygen was removed from carbon dioxide (rather than hydrogen from water, releasing oxygen) and that carbon then combined with water to form carbohydrate (rather than the hydrogen from water combining with CO 2 to form CH 2 O).

By 1940 chemists were using heavy isotopes to follow the reactions of photosynthesis. Water marked with an isotope of oxygen ( 18 O) was used in early experiments. Plants that photosynthesized in the presence of water containing H 2 18 O produced oxygen gas containing 18 O; those that photosynthesized in the presence of normal water produced normal oxygen gas. These results provided definitive support for van Niel’s theory that the oxygen gas produced during photosynthesis is derived from water.

ENCYCLOPEDIC ENTRY

Photosynthesis.

Photosynthesis is the process by which plants use sunlight, water, and carbon dioxide to create oxygen and energy in the form of sugar.

Loading ...

Learning materials, instructional links.

  • Photosynthesis (Google doc)

Most life on Earth depends on photosynthesis .The process is carried out by plants, algae, and some types of bacteria, which capture energy from sunlight to produce oxygen (O 2 ) and chemical energy stored in glucose (a sugar). Herbivores then obtain this energy by eating plants, and carnivores obtain it by eating herbivores.

The process

During photosynthesis, plants take in carbon dioxide (CO 2 ) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose. The plant then releases the oxygen back into the air, and stores energy within the glucose molecules.

Chlorophyll

Inside the plant cell are small organelles called chloroplasts , which store the energy of sunlight. Within the thylakoid membranes of the chloroplast is a light-absorbing pigment called chlorophyll , which is responsible for giving the plant its green color. During photosynthesis , chlorophyll absorbs energy from blue- and red-light waves, and reflects green-light waves, making the plant appear green.

Light-dependent Reactions vs. Light-independent Reactions

While there are many steps behind the process of photosynthesis, it can be broken down into two major stages: light-dependent reactions and light-independent reactions. The light-dependent reaction takes place within the thylakoid membrane and requires a steady stream of sunlight, hence the name light- dependent reaction. The chlorophyll absorbs energy from the light waves, which is converted into chemical energy in the form of the molecules ATP and NADPH . The light-independent stage, also known as the Calvin cycle , takes place in the stroma , the space between the thylakoid membranes and the chloroplast membranes, and does not require light, hence the name light- independent reaction. During this stage, energy from the ATP and NADPH molecules is used to assemble carbohydrate molecules, like glucose, from carbon dioxide.

C3 and C4 Photosynthesis

Not all forms of photosynthesis are created equal, however. There are different types of photosynthesis, including C3 photosynthesis and C4 photosynthesis. C3 photosynthesis is used by the majority of plants. It involves producing a three-carbon compound called 3-phosphoglyceric acid during the Calvin Cycle, which goes on to become glucose. C4 photosynthesis, on the other hand, produces a four-carbon intermediate compound, which splits into carbon dioxide and a three-carbon compound during the Calvin Cycle. A benefit of C4 photosynthesis is that by producing higher levels of carbon, it allows plants to thrive in environments without much light or water. The National Geographic Society is making this content available under a Creative Commons CC-BY-NC-SA license . The License excludes the National Geographic Logo (meaning the words National Geographic + the Yellow Border Logo) and any images that are included as part of each content piece. For clarity the Logo and images may not be removed, altered, or changed in any way.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

June 21, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Logo

Essay on Photosynthesis

Students are often asked to write an essay on Photosynthesis in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Photosynthesis

What is photosynthesis.

Photosynthesis is how plants make their own food using sunlight. It happens in the leaves of plants. Tiny parts inside the leaves, called chloroplasts, use sunlight to turn water and carbon dioxide from the air into sugar and oxygen. The sugar is food for the plant.

The Ingredients

The main things needed for photosynthesis are sunlight, water, and carbon dioxide. Roots soak up water from the soil. Leaves take in carbon dioxide from the air. Then, using sunlight, plants create food and release oxygen.

The Process

In the chloroplasts, sunlight energy is changed into chemical energy. This energy turns water and carbon dioxide into glucose, a type of sugar. Oxygen is made too, which goes into the air for us to breathe.

Why It’s Important

Photosynthesis is vital for life on Earth. It gives us food and oxygen. Without it, there would be no plants, and without plants, animals and people would not survive. It also helps take in carbon dioxide, which is good for the Earth.

250 Words Essay on Photosynthesis

Why is photosynthesis important.

This process is very important because it is the main way plants make food for themselves and for us, too. Without photosynthesis, plants could not grow, and without plants, animals and humans would not have oxygen to breathe or food to eat.

How Photosynthesis Works

Photosynthesis happens in two main stages. In the first stage, the plant captures sunlight with its leaves. The sunlight gives the plant energy to split water inside its leaves into hydrogen and oxygen. The oxygen is released into the air, and the hydrogen is used in the next stage.

In the second stage, the plant mixes the hydrogen with carbon dioxide from the air to make glucose, which is a type of sugar that plants use for energy. This energy helps the plant to grow, make flowers, and produce seeds.

The Cycle of Life

Photosynthesis is a key part of the cycle of life on Earth. By making food and oxygen, plants support life for all creatures. When animals eat plants, they get the energy from the plants, and when animals breathe, they use the oxygen that plants release. It’s a beautiful cycle that keeps the planet alive.

500 Words Essay on Photosynthesis

Photosynthesis is a process used by plants, algae, and some bacteria to turn sunlight, water, and carbon dioxide into food and oxygen. This happens in the green parts of plants, mainly the leaves. The green color comes from chlorophyll, a special substance in the leaves that captures sunlight.

The Ingredients of Photosynthesis

The photosynthesis recipe.

When sunlight hits the leaves, the chlorophyll captures it and starts the food-making process. The energy from the sunlight turns water and carbon dioxide into glucose, a type of sugar that plants use for energy, and oxygen, which is released into the air. This process is like a recipe that plants follow to make their own food.

The Importance of Photosynthesis

Photosynthesis is very important for life on Earth. It gives us oxygen, which we need to breathe. Plants use the glucose they make for growth and to build other important substances like cellulose, which they use to make their cell walls. Without photosynthesis, there would be no food for animals or people, and no oxygen to breathe.

The Benefits to the Environment

Photosynthesis and the food chain.

All living things need energy to survive, and this energy usually comes from food. Plants are at the bottom of the food chain because they can make their own food using photosynthesis. Animals that eat plants get energy from the glucose in the plants. Then, animals that eat other animals get this energy too. So, photosynthesis is the start of the food chain that feeds almost every living thing on Earth.

Photosynthesis in Our Lives

Photosynthesis affects our lives in many ways. It gives us fruits, vegetables, and grains to eat. Trees and plants also give us wood, paper, and other materials. Plus, they provide shade and help make the air fresh and clean.

If you’re looking for more, here are essays on other interesting topics:

Apart from these, you can look at all the essays by clicking here .

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

  • BiologyDiscussion.com
  • Follow Us On:
  • Google Plus
  • Publish Now

Biology Discussion

Photosynthesis: Essay on Photosynthesis (2098 Words)

photosynthesis short essay

ADVERTISEMENTS:

Here is your essay on Photosynthesis!

[I] Photosynthesis:

Photosynthesis is one of the most fundamental biological reactions.

The chlorophyll bearing plants trap the free energy of sunlight as photons and transform and store it as chemical potential energy by combining CO 2 and water.

The end products of photosynthesis are carbohydrates with loss of oxygen. These directly or indirectly serve as the source of energy for all living beings, except chemosynthetic bacteria.

Photosynthesis

Image Courtesy : co2crc.com.au/Photosynthesis_media.jpg

[II] Food storage :

Some unpigmented plastids like leucoplasts store the essential food materials like protein, oil and starch. Later on these are used during germination of seeds and development.

[III] Hereditary carrier :

Recent studies show that these plastids, like chromosomes, are transmitted directly to the daughter cells during cell division. Cytoplasmic inheritance of plastids in Mirabilis is the well-known example. They produce phenotypic effects in Oenothera and other plants.

[IV] Chloroplasts as semiautonomous organoid :

The chloroplast matrix contains dissolved salts and enzymes of photo­synthesis. Besides these, like mitochondria, it contains RNA, DNA and ribosomes, and is capable of carrying on protein synthesis.

The chloroplast ribosomes are of the same size as ribosomes in prokaryotes. Chloroplasts are also semi-autonomous like mitochondria. They can grow and divide, and their DNA contains a portion of the genetic information needed for the synthesis of chloroplast proteins.

[V] Inheritance of chloroplasts :

Cells have the capacity to outgrow their chloroplasts and the rate of multiplication of chloroplasts is partly independent of the rate of multiplication of entire cells. Brawerman and Chargaff (1960) discovered it in Euglena gracilis after a temperature shock.

Cells which were permitted to multiply rapidly became irreversibly bleached, whereas cells prevented from dividing regained their normal ability to produce chloroplasts. They concluded that Euglena contains an autonomously replicating factor which is necessary for chloroplast formation.

[VI] DNA in chloroplasts :

Chloroplasts contain both DNA and the necessary mechanism for synthesizing specific RNA’s and proteins from a DNA template. DNA is found in chloroplasts (Stocking and Gifford, 1959). Ris and Plaut (1962) have also found DNA in the chloroplasts of alga Chlamydomonas. It has now been generally accepted that characteristic chloroplast DNA’s or chloroplast chromosomes occur in the photosynthetic organelles of algae and higher plants.

According to Brawerman (1966) this DNA differs from nuclear DNA in GC (guanosine and cytosine) content. Chloroplasts also contain a DNA-dependent RNA polymerase; it appears that specific RNA’s are synthesized from chloroplast DNA as a template (Kirk 1966). Chloroplasts DNA are capable of self-duplication.

[VII] Chloroplast ribosomes :

Lyttleton (1962) isolated chloroplast ribosomes, which are estimated to make up 3 to 7% of the chloroplast dry mass. Chloroplast ribosomes are smaller than cytoplasmic ribosomes. These are 60-66S. Chloroplast ribosomes also dissociate reversibly into 50S and 35S subunits, in a way that is found in E. coli ribosomes (Boardman et al., 1966). Chloroplasts have three types of RNA required for protein synthesis: ribosomal, transfer and messenger. Chloroplast ribosomes associate to form polysomes for synthesis of proteins (Gunning and Steer, 1975).

[VIII] Protein synthesis :

Protein synthesis in mitochondria and chloroplasts is similar to that of prokaryotes. For example, the size of chloroplast ribosomes is the same as ribosomes of blue-green algae, and ribosomes of chloroplasts and mitochondria more closely resemble prokaryotic ribosomes in antibiotic sensitivity than they do eukaryotic ribosomes.

Related Articles:

  • Differences between Respiration and Photosynthesis
  • Photochemical and Biosynthetic Phase of Photosynthesis
  • Photosynthesis
  • Anybody can ask a question
  • Anybody can answer
  • The best answers are voted up and rise to the top

Forum Categories

  • Animal Kingdom
  • Biodiversity
  • Biological Classification
  • Biology An Introduction 11
  • Biology An Introduction
  • Biology in Human Welfare 175
  • Biomolecules
  • Biotechnology 43
  • Body Fluids and Circulation
  • Breathing and Exchange of Gases
  • Cell- Structure and Function
  • Chemical Coordination
  • Digestion and Absorption
  • Diversity in the Living World 125
  • Environmental Issues
  • Excretory System
  • Flowering Plants
  • Food Production
  • Genetics and Evolution 110
  • Human Health and Diseases
  • Human Physiology 242
  • Human Reproduction
  • Immune System
  • Living World
  • Locomotion and Movement
  • Microbes in Human Welfare
  • Mineral Nutrition
  • Molecualr Basis of Inheritance
  • Neural Coordination
  • Organisms and Population
  • Plant Growth and Development
  • Plant Kingdom
  • Plant Physiology 261
  • Principles and Processes
  • Principles of Inheritance and Variation
  • Reproduction 245
  • Reproduction in Animals
  • Reproduction in Flowering Plants
  • Reproduction in Organisms
  • Reproductive Health
  • Respiration
  • Structural Organisation in Animals
  • Transport in Plants
  • Trending 14

Privacy Overview

CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

web counter

  • COVID-19 Tracker
  • Biochemistry
  • Anatomy & Physiology
  • Microbiology
  • Neuroscience
  • Animal Kingdom
  • NGSS High School
  • Latest News
  • Editors’ Picks
  • Weekly Digest
  • Quotes about Biology

Biology Dictionary

Photosynthesis

BD Editors

Reviewed by: BD Editors

Photosynthesis Definition

Photosynthesis is the biochemical pathway which converts the energy of light into the bonds of glucose molecules. The process of photosynthesis occurs in two steps. In the first step, energy from light is stored in the bonds of adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH). These two energy-storing cofactors are then used in the second step of photosynthesis to produce organic molecules by combining carbon molecules derived from carbon dioxide (CO 2 ). The second step of photosynthesis is known as the Calvin Cycle. These organic molecules can then be used by mitochondria to produce ATP, or they can be combined to form glucose, sucrose, and other carbohydrates. The chemical equation for the entire process can be seen below.

Photosynthesis Equation

Above is the overall reaction for photosynthesis. Using the energy from light and the hydrogens and electrons from water, the plant combines the carbons found in carbon dioxide into more complex molecules. While a 3-carbon molecule is the direct result of photosynthesis, glucose is simply two of these molecules combined and is often represented as the direct result of photosynthesis due to glucose being a foundational molecule in many cellular systems. You will also notice that 6 gaseous oxygen molecules are produced, as a by-produce. The plant can use this oxygen in its mitochondria during oxidative phosphorylation . While some of the oxygen is used for this purpose, a large portion is expelled into the atmosphere and allows us to breathe and undergo our own oxidative phosphorylation, on sugar molecules derived from plants. You will also notice that this equation shows water on both sides. That is because 12 water molecules are split during the light reactions, while 6 new molecules are produced during and after the Calvin cycle. While this is the general equation for the entire process, there are many individual reactions which contribute to this pathway.

Stages of Photosynthesis

The light reactions.

The light reactions happen in the thylakoid membranes of the chloroplasts of plant cells. The thylakoids have densely packed protein and enzyme clusters known as photosystems . There are two of these systems, which work in conjunction with each other to remove electrons and hydrogens from water and transfer them to the cofactors ADP and NADP + . These photosystems were named in the order of which they were discovered, which is opposite of how electrons flow through them. As seen in the image below, electrons excited by light energy flow first through photosystem II (PSII), and then through photosystem I (PSI) as they create NADPH. ATP is created by the protein ATP synthase , which uses the build-up of hydrogen atoms to drive the addition of phosphate groups to ADP.

Thylakoid membrane

The entire system works as follows. A photosystem is comprised of various proteins that surround and connect a series of pigment molecules . Pigments are molecules that absorb various photons, allowing their electrons to become excited. Chlorophyll a is the main pigment used in these systems, and collects the final energy transfer before releasing an electron. Photosystem II starts this process of electrons by using the light energy to split a water molecule, which releases the hydrogen while siphoning off the electrons. The electrons are then passed through plastoquinone, an enzyme complex that releases more hydrogens into the thylakoid space . The electrons then flow through a cytochrome complex and plastocyanin to reach photosystem I. These three complexes form an electron transport chain , much like the one seen in mitochondria. Photosystem I then uses these electrons to drive the reduction of NADP + to NADPH. The additional ATP made during the light reactions comes from ATP synthase, which uses the large gradient of hydrogen molecules to drive the formation of ATP.

The Calvin Cycle

With its electron carriers NADPH and ATP all loaded up with electrons, the plant is now ready to create storable energy. This happens during the Calvin Cycle , which is very similar to the citric acid cycle seen in mitochondria. However, the citric acid cycle creates ATP other electron carriers from 3-carbon molecules, while the Calvin cycle produces these products with the use of NADPH and ATP. The cycle has 3 phases, as seen in the graphic below.

Calvin cycle

During the first phase, a carbon is added to a 5-carbon sugar, creating an unstable 6-carbon sugar. In phase two, this sugar is reduced into two stable 3-carbon sugar molecules. Some of these molecules can be used in other metabolic pathways, and are exported. The rest remain to continue cycling through the Calvin cycle. During the third phase, the five-carbon sugar is regenerated to start the process over again. The Calvin cycle occurs in the stroma of a chloroplast. While not considered part of the Calvin cycle, these products can be used to create a variety of sugars and structural molecules.

Products of Photosynthesis

The direct products of the light reactions and the Calvin cycle are 3-phosphoglycerate and G3P, two different forms of a 3-carbon sugar molecule. Two of these molecules combined equals one glucose molecule, the product seen in the photosynthesis equation. While this is the main food source for plants and animals, these 3-carbon skeletons can be combined into many different forms. A structural form worth note is cellulose , and extremely strong fibrous material made essentially of strings of glucose. Besides sugars and sugar-based molecules, oxygen is the other main product of photosynthesis. Oxygen created from photosynthesis fuels every respiring organism on the planet.

Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., Bretscher, A., . . . Matsudaira, P. (2008). Molecular Cell Biology 6th. ed . New York: W.H. Freeman and Company. Nelson, D. L., & Cox, M. M. (2008). Principles of Biochemistry . New York: W.H. Freeman and Company.

Cite This Article

Subscribe to our newsletter, privacy policy, terms of service, scholarship, latest posts, white blood cell, t cell immunity, satellite cells, embryonic stem cells, popular topics, amino acids, hydrochloric acid, mitochondria, homeostasis.

It’s a wonderful world — and universe — out there.

Come explore with us!  

Science News Explores

Explainer: how photosynthesis works.

Plants make sugar and oxygen with the power of water, carbon dioxide and sunlight

green leaves lit up from behind with sunlight

Green plants take in light from the sun and turn water and carbon dioxide into the oxygen we breathe and the sugars we eat.

Jeja/E+/Getty Images

Share this:

  • Google Classroom

By Bethany Brookshire

October 28, 2020 at 6:30 am

Take a deep breath. Then thank a plant. If you eat fruit, vegetables, grains or potatoes, thank a plant too.  Plants and algae provide us with the oxygen we need to survive, as well as the carbohydrates we use for energy. They do it all through photosynthesis.

Photosynthesis is the process of creating sugar and oxygen from carbon dioxide, water and sunlight. It happens through a long series of chemical reactions. But it can be summarized like this: Carbon dioxide, water and light go in. Glucose, water and oxygen come out. (Glucose is a simple sugar.)

Photosynthesis can be split into two processes. The “photo” part refers to reactions triggered by light. “Synthesis” — the making of the sugar — is a separate process called the Calvin cycle.

Both processes happen inside a chloroplast. This is a specialized structure, or organelle, in a plant cell. The structure contains stacks of membranes called thylakoid membranes. That’s where the light reaction begins.

a diagram showing the inside of a chloroplast

Let the light shine in

When light hits a plant’s leaves, it shines on chloroplasts and into their thylakoid membranes. Those membranes are filled with chlorophyll , a green pigment. This pigment absorbs light energy. Light travels as electromagnetic waves . The wavelength — distance between waves — determines energy level. Some of those wavelengths are visible to us as the colors we see . If a molecule, such as chlorophyll, has the right shape, it can absorb the energy from some wavelengths of light.

Chlorophyll can absorb light we see as blue and red. That’s why we see plants as green. Green is the wavelength plants reflect, not the color they absorb.

While light travels as a wave, it also can be a particle called a photon . Photons have no mass. They do, however, have a small amount of light energy.

When a photon of light from the sun bounces into a leaf, its energy excites a chlorophyll molecule. That photon starts a process that splits a molecule of water. The oxygen atom that splits off from the water instantly bonds with another, creating a molecule of oxygen, or O 2 . The chemical reaction also produces a molecule called ATP and another molecule called NADPH. Both of these allow a cell to store energy. The ATP and NADPH also will take part in the synthesis part of photosynthesis.

Notice that the light reaction makes no sugar. Instead, it supplies energy — stored in the ATP and NADPH — that gets plugged into the Calvin cycle. This is where sugar is made.

But the light reaction does produce something we use: oxygen. All the oxygen we breathe is the result of this step in photosynthesis, carried out by plants and algae (which are not plants ) the world over.

Give me some sugar

The next step takes the energy from the light reaction and applies it to a process called the Calvin cycle. The cycle is named for Melvin Calvin, the man who discovered it.

The Calvin cycle is sometimes also called the dark reaction because none of its steps require light. But it still happens during the day. That’s because it needs the energy produced by the light reaction that comes before it.

While the light reaction takes place in the thylakoid membranes, the ATP and NADPH it produces end up in the stroma. This is the space inside the chloroplast but outside the thylakoid membranes.

The Calvin cycle has four major steps:

  • carbon fixation : Here, the plant brings in CO 2 and attaches it to another carbon molecule, using rubisco. This is an enzyme , or chemical that makes reactions move faster. This step is so important that rubisco is the most common protein in a chloroplast — and on Earth. Rubisco attaches the carbon in CO 2 to a five-carbon molecule called ribulose 1,5-bisphosphate (or RuBP). This creates a six-carbon molecule, which immediately splits into two chemicals, each with three carbons.
  • reduction : The ATP and NADPH from the light reaction pop in and transform the two three-carbon molecules into two small sugar molecules. The sugar molecules are called G3P. That’s short for glyceraldehyde 3-phosphate (GLIH- sur-AAL-duh-hide 3-FOS-fayt).
  • carbohydrate formation : Some of that G3P leaves the cycle to be converted into bigger sugars such as glucose (C 6 H 12 O 6 ).
  • regeneration : With more ATP from the continuing light reaction, leftover G3P picks up two more carbons to become RuBP. This RuBP pairs up with rubisco again. They are now ready to start the Calvin cycle again when the next molecule of CO 2 arrives.

At the end of photosynthesis, a plant ends up with glucose (C 6 H 12 O 6 ), oxygen (O 2 ) and water (H 2 O). The glucose molecule goes on to bigger things. It can become part of a long-chain molecule, such as cellulose; that’s the chemical that makes up cell walls. Plants also can store the energy packed in a glucose molecule within larger starch molecules. They can even put the glucose into other sugars — such as fructose — to make a plant’s fruit sweet.

All of these molecules are carbohydrates — chemicals containing carbon, oxygen and hydrogen. (CarbOHydrate makes it easy to remember.) The plant uses the bonds in these chemicals to store energy. But we use the these chemicals too. Carbohydrates are an important part of the foods we eat, particularly grains, potatoes, fruits and vegetables.

More Stories from Science News Explores on Plants

A close-up shot shows nine ants climbing on a peony bud. Pink petals peek out from green guard petals.

Many flowers and ferns lure in ants as bodyguards

A new-to-science "fairy lantern" is seen poking just above dead leaves. A bright yellow is ringed by brownish tentacle-like parts that stick out almost perpendicular. This all sits atop a slug-shaped part with orange stripes, which is attached to a thinner, longer pale stem.

This squid-like ‘fairy lantern’ plant is new to science

More than a dozen plastic containers dot the greenish-brown vegetation in the foreground of this Arctic tundra site in Sweden. A body of water and mountains shrouded in mist are visible in the background.

Microbes in the Arctic may be releasing more climate-warming gases

hands holding rice grains in the field

Gene editing may help rice better withstand climate change

A bee flies toward a yellow buttercup flower.

Flowers may electrically detect bees buzzing nearby

a view of sunlit treetops from below

Let’s learn about photosynthesis

a coastal landslide drags a river of water and soil down a hill from farmland to the beach

Experiment: Can plants stop soil erosion?

image of yellow thistle flower head

On hot summer days, this thistle stays cool to the touch

8. Photosynthesis

Overview of photosynthesis, learning objectives.

By the end of this section, you will be able to do the following:

  • Explain the significance of photosynthesis to other living organisms
  • Describe the main structures involved in photosynthesis
  • Identify the substrates and products of photosynthesis

Photosynthesis is essential to all life on earth; both plants and animals depend on it. It is the only biological process that can capture energy that originates from sunlight and converts it into chemical compounds (carbohydrates) that every organism uses to power its metabolism. It is also a source of oxygen necessary for many living organisms. In brief, the energy of sunlight is “captured” to energize electrons, whose energy is then stored in the covalent bonds of sugar molecules. How long lasting and stable are those covalent bonds? The energy extracted today by the burning of coal and petroleum products represents sunlight energy captured and stored by photosynthesis 350 to 200 million years ago during the Carboniferous Period.

Plants, algae, and a group of bacteria called cyanobacteria are the only organisms capable of performing photosynthesis ( (Figure) ). Because they use light to manufacture their own food, they are called photoautotrophs (literally, “self-feeders using light”). Other organisms, such as animals, fungi, and most other bacteria, are termed heterotrophs (“other feeders”), because they must rely on the sugars produced by photosynthetic organisms for their energy needs. A third very interesting group of bacteria synthesize sugars, not by using sunlight’s energy, but by extracting energy from inorganic chemical compounds. For this reason, they are referred to as chemoautotrophs.

Photo a shows a fern leaf. Photo b shows thick, green algae growing on water. Micrograph c shows cyanobacteria, which are green rods about 10 microns long. Photo D shows black smoke pouring out of a deep sea vent covered with red worms. Micrograph E shows rod-shaped bacteria about 1.5 microns long.

The importance of photosynthesis is not just that it can capture sunlight’s energy. After all, a lizard sunning itself on a cold day can use the sun’s energy to warm up in a process called behavioral thermoregulation . In contrast, photosynthesis is vital because it evolved as a way to store the energy from solar radiation (the “photo-” part) to energy in the carbon-carbon bonds of carbohydrate molecules (the “-synthesis” part). Those carbohydrates are the energy source that heterotrophs use to power the synthesis of ATP via respiration. Therefore, photosynthesis powers 99 percent of Earth’s ecosystems. When a top predator, such as a wolf, preys on a deer ( (Figure) ), the wolf is at the end of an energy path that went from nuclear reactions on the surface of the sun, to visible light, to photosynthesis, to vegetation, to deer, and finally to the wolf.

A photo shows deer running through tall grass beside a forest.

Main Structures and Summary of Photosynthesis

Photosynthesis is a multi-step process that requires specific wavelengths of visible sunlight, carbon dioxide (which is low in energy), and water as substrates ( (Figure) ). After the process is complete, it releases oxygen and produces glyceraldehyde-3-phosphate (GA3P), as well as simple carbohydrate molecules (high in energy) that can then be converted into glucose, sucrose, or any of dozens of other sugar molecules. These sugar molecules contain energy and the energized carbon that all living things need to survive.

Photo of a tree. Arrows indicate that the tree uses carbon dioxide, water, and sunlight to make sugars and oxygen.

The following is the chemical equation for photosynthesis ( (Figure) ):

The photosynthesis equation is shown. According to this equation, six carbon dioxide and six water molecules produce one sugar molecule and six oxygen molecules. The sugar molecule is made of six carbons, twelve hydrogens, and six oxygens. Sunlight is used as an energy source.

Although the equation looks simple, the many steps that take place during photosynthesis are actually quite complex. Before learning the details of how photoautotrophs turn sunlight into food, it is important to become familiar with the structures involved.

Basic Photosynthetic Structures

In plants, photosynthesis generally takes place in leaves, which consist of several layers of cells. The process of photosynthesis occurs in a middle layer called the mesophyll. The gas exchange of carbon dioxide and oxygen occurs through small, regulated openings called stomata (singular: stoma), which also play roles in the regulation of gas exchange and water balance. The stomata are typically located on the underside of the leaf, which helps to minimize water loss due to high temperatures on the upper surface of the leaf. Each stoma is flanked by guard cells that regulate the opening and closing of the stomata by swelling or shrinking in response to osmotic changes.

In all autotrophic eukaryotes, photosynthesis takes place inside an organelle called a chloroplast. For plants, chloroplast-containing cells exist mostly in the mesophyll. Chloroplasts have a double membrane envelope (composed of an outer membrane and an inner membrane), and are ancestrally derived from ancient free-living cyanobacteria. Within the chloroplast are stacked, disc-shaped structures called thylakoids. Embedded in the thylakoid membrane is chlorophyll, a pigment (molecule that absorbs light) responsible for the initial interaction between light and plant material, and numerous proteins that make up the electron transport chain. The thylakoid membrane encloses an internal space called the thylakoid lumen. As shown in (Figure) , a stack of thylakoids is called a granum, and the liquid-filled space surrounding the granum is called stroma or “bed” (not to be confused with stoma or “mouth,” an opening on the leaf epidermis).

Art Connection

This illustration shows a chloroplast, which has an outer membrane and an inner membrane. The space between the outer and inner membranes is called the intermembrane space. Inside the inner membrane are flat, pancake-like structures called thylakoids. The thylakoids form stacks called grana. The liquid inside the inner membrane is called the stroma, and the space inside the thylakoid is called the thylakoid lumen.

On a hot, dry day, the guard cells of plants close their stomata to conserve water. What impact will this have on photosynthesis?

The Two Parts of Photosynthesis

Photosynthesis takes place in two sequential stages: the light-dependent reactions and the light-independent reactions. In the light-dependent reactions, energy from sunlight is absorbed by chlorophyll and that energy is converted into stored chemical energy. In the light-independent reactions, the chemical energy harvested during the light-dependent reactions drives the assembly of sugar molecules from carbon dioxide. Therefore, although the light-independent reactions do not use light as a reactant, they require the products of the light-dependent reactions to function. In addition, however, several enzymes of the light-independent reactions are activated by light. The light-dependent reactions utilize certain molecules to temporarily store the energy: These are referred to as energy carriers . The energy carriers that move energy from light-dependent reactions to light-independent reactions can be thought of as “full” because they are rich in energy. After the energy is released, the “empty” energy carriers return to the light-dependent reaction to obtain more energy. (Figure) illustrates the components inside the chloroplast where the light-dependent and light-independent reactions take place.

This illustration shows a chloroplast with an outer membrane, an inner membrane, and stacks of membranes inside the inner membrane called thylakoids. The entire stack is called a granum. In the light reactions, energy from sunlight is converted into chemical energy in the form of ATP and NADPH. In the process, water is used and oxygen is produced. Energy from ATP and NADPH are used to power the Calvin cycle, which produces GA3P from carbon dioxide. ATP is broken down to ADP and Pi, and NADPH is oxidized to NADP+. The cycle is completed when the light reactions convert these molecules back into ATP and NADPH.

Link to Learning

Click the link to learn more about photosynthesis.

Everyday Connection

Photosynthesis at the Grocery Store

A photo shows people shopping in a grocery store.

Major grocery stores in the United States are organized into departments, such as dairy, meats, produce, bread, cereals, and so forth. Each aisle ( (Figure) ) contains hundreds, if not thousands, of different products for customers to buy and consume.

Although there is a large variety, each item ultimately can be linked back to photosynthesis. Meats and dairy link, because the animals were fed plant-based foods. The breads, cereals, and pastas come largely from starchy grains, which are the seeds of photosynthesis-dependent plants. What about desserts and drinks? All of these products contain sugar—sucrose is a plant product, a disaccharide, a carbohydrate molecule, which is built directly from photosynthesis. Moreover, many items are less obviously derived from plants: For instance, paper goods are generally plant products, and many plastics (abundant as products and packaging) are derived from “algae” (unicellular plant-like organisms, and cyanobacteria). Virtually every spice and flavoring in the spice aisle was produced by a plant as a leaf, root, bark, flower, fruit, or stem. Ultimately, photosynthesis connects to every meal and every food a person consumes.

Section Summary

The process of photosynthesis transformed life on Earth. By harnessing energy from the sun, the evolution of photosynthesis allowed living things access to enormous amounts of energy. Because of photosynthesis, living things gained access to sufficient energy that allowed them to build new structures and achieve the biodiversity evident today.

Only certain organisms (photoautotrophs), can perform photosynthesis; they require the presence of chlorophyll, a specialized pigment that absorbs certain wavelengths of the visible spectrum and can capture energy from sunlight. Photosynthesis uses carbon dioxide and water to assemble carbohydrate molecules and release oxygen as a byproduct into the atmosphere. Eukaryotic autotrophs, such as plants and algae, have organelles called chloroplasts in which photosynthesis takes place, and starch accumulates. In prokaryotes, such as cyanobacteria, the process is less localized and occurs within folded membranes, extensions of the plasma membrane, and in the cytoplasm.

Art Connections

(Figure) On a hot, dry day, plants close their stomata to conserve water. What impact will this have on photosynthesis?

(Figure) Levels of carbon dioxide (a necessary photosynthetic substrate) will immediately fall. As a result, the rate of photosynthesis will be inhibited.

Review Questions

Which of the following components is not used by both plants and cyanobacteria to carry out photosynthesis?

  • chloroplasts
  • chlorophyll
  • carbon dioxide

What two main products result from photosynthesis?

  • oxygen and carbon dioxide
  • chlorophyll and oxygen
  • sugars/carbohydrates and oxygen
  • sugars/carbohydrates and carbon dioxide

In which compartment of the plant cell do the light-independent reactions of photosynthesis take place?

  • outer membrane

Which statement about thylakoids in eukaryotes is not correct?

  • Thylakoids are assembled into stacks.
  • Thylakoids exist as a maze of folded membranes.
  • The space surrounding thylakoids is called stroma.
  • Thylakoids contain chlorophyll.

Predict the end result if a chloroplast’s light-independent enzymes developed a mutation that prevented them from activating in response to light.

  • GA3P accumulation
  • ATP and NADPH accumulation
  • Water accumulation
  • Carbon dioxide depletion

Show Solution

How are the NADPH and GA3P molecules made during photosynthesis similar?

  • They are both end products of photosynthesis.
  • They are both substrates for photosynthesis.
  • They are both produced from carbon dioxide.
  • They both store energy in chemical bonds.

Free Response

What is the overall outcome of the light reactions in photosynthesis?

The outcome of light reactions in photosynthesis is the conversion of solar energy into chemical energy that the chloroplasts can use to do work (mostly anabolic production of carbohydrates from carbon dioxide).

Why are carnivores, such as lions, dependent on photosynthesis to survive?

Because lions eat animals that eat plants.

Why are energy carriers thought of as either “full” or “empty”?

The energy carriers that move from the light-dependent reaction to the light-independent one are “full” because they bring energy. After the energy is released, the “empty” energy carriers return to the light-dependent reaction to obtain more energy. There is not much actual movement involved. Both ATP and NADPH are produced in the stroma where they are also used and reconverted into ADP, Pi, and NADP+.

Describe how the grey wolf population would be impacted by a volcanic eruption that spewed a dense ash cloud that blocked sunlight in a section of Yellowstone National Park.

The grey wolves are apex predators in their food web, meaning they consume smaller prey animals and are not the prey of any other animal. Blocking sunlight would prevent the plants at the bottom of the food web from performing photosynthesis. This would kill many of the plants, reducing the food sources available to smaller animals in Yellowstone. A smaller prey animal population means that fewer wolves can survive in the area, and the population of grey wolves will decrease.

How does the closing of the stomata limit photosynthesis?

  • Biology 2e. Provided by : OpenStax. Located at : https://openstax.org/details/books/biology-2e . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]

Footer Logo Lumen Candela

Privacy Policy

Understanding Global Change

Discover why the climate and environment changes, your place in the Earth system, and paths to a resilient future.

Photosynthesis

closeup image of storyboard

Photosynthesis is the processes of using sunlight to convert chemical compounds (specifically carbon dioxide and water ) into food . Photosynthesizing organisms (plants, algae, and bacteria) provide most of the chemical energy that flows through the biosphere.  They also produced most of the biomass that led to the fossil fuels that power much of our modern world. Photosynthesis takes place on land, in the ocean, and in freshwater environments. The first photosynthesizing single-celled bacteria evolved over 3.5 billion years ago. The subsequent rise in atmospheric oxygen (a byproduct of photosynthesis) about a billion years later played a major role in shaping the evolution of life on Earth over the last 2.5 billion years. Today the vast majority of land, freshwater, and oceanic organisms require oxygen for respiration , the biochemical process that generates energy from food.

On this page:

What is photosynthesis, earth system model about photosynthesis, explore the earth system, investigate, links to learn more.

For the classroom:

  • Teaching Resources

photosynthesis short essay

Global Change Infographic

Photosynthesus is an essential part of How the Earth System Works.  Click the image on the left to open the Understanding Global Change Infographic . Locate the photosynthesis icon and identify other Earth system processes and phenomena that cause changes to, or are affected by, photosynthesis.

Photosynthesis is the chemical process by which plants, algae, and some bacteria use the energy from sunlight to transform carbon dioxide (a greenhouse gas ) from the atmosphere, and water , into organic compounds such as sugars. These sugars are then used to make complex carbohydrates, lipids, and proteins, as well as the wood, leaves, and roots of plants.  The amount of organic matter made by photosynthesizing organisms in an ecosystem is defined as the productivity of that ecosystem.  Energy flows through the biosphere as organisms (including some animals) eat photosynthesizing organisms (called herbivores), and as organisms then eat those herbivores (carnivores) , etc., to get their energy for growth, reproduction, and other functions.  This energy is acquired through the process of cellular respiration , which usually requires oxygen.   Oxygen is a byproduct of photosynthesis. About 70% of the oxygen in the atmosphere that we breathe comes from algae in the ocean. Atmospheric oxygen from photosynthesis also forms the ozone layer , which protects organisms from harmful high-energy ultraviolet (UV) radiation from the Sun . Because photosynthesis also requires water , the availability of water affects the productivity and biomass of the ecosystem, which in turn affects how much and how rapidly water cycles through the ecosystem.

Fossil fuels are derived from the burial of photosynthetic organisms, including plants on land (which primarily form coal) and plankton in the oceans (which primarily form oil and natural gas). While buried, the carbon in the organic material is removed from the carbon cycle for thousands of years to hundreds of millions of years. The burning of fossil fuels has dramatically increased the exchange of carbon from the ground back into the atmosphere and oceans. This return of carbon back into atmosphere as carbon dioxide is occurring at a rate that is hundreds to thousands of times faster than it took to bury it, and much faster than it can be removed by photosynthesis or weathering . Thus, the carbon dioxide released from the burning of fossil fuels is accumulating in the atmosphere, increasing average temperatures and causing ocean acidification .

A simplified diagram showing the overall inputs – carbon dioxide, water, and sunlight, and products – oxygen and sugar (glucose), of photosynthesis.

A simplified diagram showing the overall inputs – carbon dioxide, water, and sunlight, and products – oxygen and sugar (glucose), of photosynthesis.

The rate of photosynthesis in ecosystems is affected by various environmental conditions, including:

  • Climatic conditions, such as the amount of sunlight available at different latitudes , temperature , and precipitation For example, ecosystems at low latitudes, such as tropical rainforests, have higher productivity and biomass than ecosystems near the poles because of they receive more sunlight and rainfall than regions at higher latitudes.
  • Nutrients , especially nitrogen and phosphorus , which when limited can decrease productivity, but when abundant can increase productivity and biomass. Photosynthesizing organisms extract nutrients from the environment, and return them to the soil when they die and decay.
  • Numerous other abiotic environmental factors, including soil quality (often related to nutrient levels), wildfires , water acidity , and oxygen levels .
  • Species interactions , including the resources species provide for each other, and how they compete for resources such as water, light, and/or space. Species that reduce or increase the success of other species alter population sizes , thus affecting productivity and biomass .
  • Evolutionary processes that can change the growth and reproduction rates of photosynthesizing organisms over time, as well as the growth and reproduction of rates of the organisms that eat them.

Humans have altered the rate of photosynthesis, and in turn productivity , in ecosystems through a variety of activities, including:

  • Deforestation , habitat destruction , and urbanization , which remove plants and trees from the environment and disrupt ecosystems.
  • Agricultural activities that increase the amount of crops available to feed the growing global human population .
  • The use of fertilizers for agricultural activities that increase the amount of nutrients , especially nitrogen and phosphorous , in soil or water. These nutrients increase plant and algae growth, including growth of species that are toxic to other organisms. Increased nutrients is not always a good thing. For example, in aquatic environments, nutrient-rich runoff can cause large amounts of algae to grow – when these algae die, they are consumed by bacteria which can reduce oxygen levels in the water, killing fish and other species. This process is known as eutrophication.
  • Human freshwater use , which can limit the amount of water available for plants and trees in an ecosystem.
  • The release of pollutants and waste , which can reduce growth and reproduction or kill plants.
  • Activities that release carbon dioxide and other greenhouse gases that cause global warming, such as the burning of fossil fuels , agricultural activities , and deforestation . Increasing carbon dioxide levels may increase photosynthesis rates in some plants, but this can also make plants less nutritious . Increasing average global land and ocean temperatures and changes in precipitation patterns also affect plant and algae growth, and can make certain species more susceptible to disease .
  • Activities such as the burning of fossil fuels , agricultural activities , and deforestation that release carbon dioxide into the atmosphere, which is absorbed by the ocean causing acidification . The decreasing pH of ocean waters (along with ocean warming) causes physiological stress for many plant and algae species, which can decrease growth, reproduction, species population sizes, and biomass .
  • The increase in carbon dioxide to the atmosphere is also thought to impact global photosynthesis rates. During photosynthesis, plants convert carbon dioxide to biomass such as sugars and wood. However, the same enzyme (rubisco) that fixes carbon dioxide can also use oxygen. When oxygen is used, plants undergo a process known as photorespiration where biomass is not produced and instead carbon dioxide is emitted to the atmosphere (see this teaching resource for more information). Photorespiration is often considered a negative process for plants. It has been proposed that as carbon dioxide levels rise in the atmosphere rates of photorespiration will decrease and rates of photosynthesis will increase. This change is termed carbon dioxide fertilization and demonstrates the complex interactions between life and climate change.
  • Introducing invasive species that compete with native plant or algae species for nutrients, water, light, or other resources, reducing native species populations.

The Earth system model below includes some of the processes and phenomena related to photosynthesis.  These processes operate at various rates and on different spatial and temporal scales. For example, carbon dioxide is transferred among plants and animals over relatively short time periods (hours-weeks), but the deforestation alters ecosystems over decades to centuries, or longer.  Can you think of additional cause and effect relationships between photosynthesis and other processes in the Earth system?

Photosynthesis system model

Click the bolded terms (e.g. respiration , productivity and biomass , and burning of fossil fuels ) on this page to learn more about these process and phenomena. Alternatively, explore the Understanding Global Change Infographic and find new topics that are of interest and/or locally relevant to you.

Learn more in these real-world examples, and challenge yourself to  construct a model  that explains the Earth system relationships.

  • The bacteria that changed the world
  • New York Times: Antarctic Ice Reveals Earth’s Accelerating Plant Growth
  • USGCRP: Climate and Health Assessment, Food Safety, Nutrition, and Distribution
  • HHMI BioInteractive: Photosynthesis
  • Evolution Connection: More on photorespiration

The Process of Photosynthesis

Introduction.

Photosynthesis is fundamental to the energy flow process in living organisms. “Plants are the primary producers and they make use of sunlight to produce sugars for energy production.” (Govindjee, 1997, p. 45) Excess nutrients are stored and the plants are eaten up by herbivores and omnivores which rely on the energy stored in the plant cells to keep alive. The herbivores are subsequently consumed by the omnivores and carnivores; this process continues from one living organism to another creating a food chain that sustains life on earth.

Problem statement

The energy flow process is fundamental to the sustenance of life on earth. For survival, each organism requires nutrition; the nutrition is sourced from another organism as food substrates except for the green plants which manufacture their food using sunlight and minerals. Many types of research have been conducted and reveal that the process of photosynthesis is the main process that sustains life. This experimental study is designed to ascertain how the process of photosynthesis leads to energy production and how it is affected by variation in light intensity and wavelength.

Relevance of the question

This study is essential for a proper understanding of the role of plants as primary producers in the food chain process.

Literature review

The photosynthesis process occurs primarily in the leaves with little taking place in the stem for some plants. The main parts of the leaf in which are involved in the process include; “the upper and lower epidermis, the mesophyll, the vascular bundles and the stomates.” (Photosynthesis, 2000) The epidermis lacks chlorophyll and therefore photosynthesis does not occur there, the epidermis only acts to protect the internal part of the leaf. “The stomates are tiny holes in the epidermis through which gaseous exchange takes place.” (Photosynthesis, 2000, para.2)

Through the stomates, Co2 enters, and O2 leaves. “The vascular bundles constitute the plants transport system through which water and other nutrients are moved around the plant.” (Photosynthesis, 2000, para.2)

Cross-sectional view of a leaf revealing the various parts.

Chlorophyll is composed of the outer and inner membranes, “there is also an inter membrane space stroma and thylakoids which are stacked in grana. The chlorophyll is normally built in the membrane of the thylakoids.” (Photosynthesis, 2000, para.3)

Chlorophyll structure.

Thus, photosynthesis is the main process in which the “radiant light energy is absorbed by the chloroplast’s pigment, chlorophyll and converted into chemical energy in the molecular form of ATP and NADH.” (Photosynthesis, 2000) The energy is then utilized in driving the Calvin cycle in the production of three-carbon sugars. The three-carbon sugars are subsequently converted to various types of carbohydrates.

According to Govindjee, it is currently possible to carry out photolysis in the laboratory. The reaction was first performed by Robert Hill in 1937 and thus became known as the Hill Reaction. The Hill Reaction requires only intact isolated chloroplasts rather than the entire intact plant cell. However, since isolated chloroplasts do not reduce carbon dioxide directly, it is essential to provide a hydrogen acceptor for the reduction process and permit electron transport to take place. The hydrogen acceptor that was chosen for this experiment is the synthetic compound 2,6-dichlorophenol-indophenol or DPIP , which is blue in the oxidized form and colorless when reduced. As indicated above, the source of hydrogen for the reduction in water. This hydrogen can reduce DPIP and turn it from a blue substance to a colorless one.

Oxygen is also formed, but it is not monitored in this experiment. The change in color of the DPIP solution, which is directly proportional to the number of hydrogen produced in the Hill Reaction, can be assayed using colorimetric spectrophotometry. The more hydrogen produced, the more DPIP that is reduced and the more colorless the solution containing DPIP becomes. Therefore, the course of this reaction can be assessed by the bleaching of the artificial hydrogen acceptor. (1997, p. 144))

Light + CO2 + 2H2O → n (CH2O) + H2O + O2

The experiment entailed the use of both boiled and fresh chloroplast suspension. The boiled chloroplast was used as a control and photosynthetic activities were monitored in the fresh chloroplast. The results were measured using a spectrophotometer and tabulated. The same procedure was repeated with variations in the light intensity and wavelength.

  • Spectrophotometer
  • Spectrophotometer cuvettes
  • Phosphate buffer (pH6.5)
  • Chloroplast suspension
  • Sodium hydrosulfite
  • Distilled water
  • Wrapping foil
  • Digital timer
  • DPIP solution

The source of hydrogen for the reduction in water. This hydrogen can reduce DPIP and turn it from a blue substance to a colorless one. Oxygen is also formed, but it is not monitored in this experiment. The change in color of the DPIP solution, which is directly proportional to the number of hydrogen produced in the Hill Reaction, can be assayed using colorimetric spectrophotometry. The more hydrogen produced, the more DPIP that is reduced and the more colorless the solution containing DPIP becomes. Therefore, the course of this reaction can be assessed by the bleaching of the artificial hydrogen acceptor. The experimental procedure was selected because it has a high specificity and therefore results will have a low error margin. The chemicals used are readily available were purchased in various forms and reconstituted in the laboratory before the practice according to the manufacture’s guidelines.

  • Obtain fresh and boiled chloroplast suspension prepared before the practical time. The boiling of the suspension will render the chloroplasts non-functional and will serve as one of the experimental controls. Allow the solution to return to room temperature before use. The chloroplast is boiled preferably at 100 degrees for 5 to 7 minutes.
  • Obtain four clean spectrophotometer cuvettes. Label them 1-4 and prepare them as follows: Cuvette 1: 3.0 ml of phosphate buffer (pH 6.5) and 1.0 ml of boiled chloroplast suspension, Cuvette 2: 3.0 ml of phosphate buffer (pH 6.5) and 1.0 ml of chloroplast suspension, Cuvette 3: 3.0 ml of phosphate buffer (pH 6.5) and 1.0 ml of chloroplast suspension, Cuvette 4: 3.0 ml of phosphate buffer (pH 6.5) and 1.0 ml of chloroplast suspension
  • Add 50 μl of the 0.1% DPIP solution to cuvette 4 only. Shake it to mix the solution well. Then add a few (very few) crystals of sodium hydrosulfite (Na2S2O4) to it. Sodium hydrosulfite reduces the DPIP and removes the blue color.
  • Be sure that the spectrophotometer is set to 600nm. Use the ‘reduced’ cuvette 4 as a blank to zero the spectrophotometer.
  • Add the same amount of DPIP that you added to cuvette 4 to cuvette 1. Mix the solution well and take a reading as quickly as possible using the spectrophotometer, because cuvettes with functional chloroplasts should immediately start producing hydrogen that reduces the DPIP. Record this value as ‘time zero’. Start the digital timer.
  • Repeat step 5 for cuvettes 2 and 3. Record the ‘time zero’ values and their starting time points.
  • Immediately after taking the first readings, wrap cuvette 3 completely in aluminum foil and place cuvettes 1-3 in a beaker of water at room temperature. Set the light source 10 inches from the cuvettes and turn it on to the highest setting. Note that the water in the beaker serves as a thermal buffer to prevent any experimental artifact due to warming by the source light.
  • Every two minutes record the optical density of cuvettes 1 and 2. Leave cuvette 3 in the dark until the end of the procedure.
  • Continue taking readings until the optical density reading of cuvette 2 does not change.
  • Remove cuvette 3 from its foil wrapping. Quickly read the optical density of this cuvette. Take two-minute readings until the optical density reading does not change for two or three-time points. Make a graphical plot with time as the independent variable and optical density as the dependent variable.

Note: Different colors of light indicate the difference in wavelength thus the use of various colors of cellophane to measure wavelength.

Dependent, independent, and controlled variables

The independent variable is the time of exposure whereby the duration of the reaction is changed to determine the effect of time on the DPIP reduction (visualized as the clearing of the blue color). The dependent variable is the optical density which varies depending on the duration the cuvette was left to react. The controlled variables include the use of the same amount of constituent chemical for each tube, temperature of the reactions where all the tubes are reacted at room temperature.

Threat reduction to internal validity was done by:

Taking measurements immediately after the timed duration had expired; was done to prevent errors in the measurement of the optical density. Providing the same conditions for all measurements taken i.e. the spectrophotometer was blanked by the same solution for all the readings which was done at 600nm. All the necessary conditions for the materials were provided prior to and during the experiment.

Plants form an important part of the food chain. “Green plants manufacture their on food using the photosynthesis process.” (Photosynthesis, 2000, para.1) Sunlight is an important aspect of this process; the practical examines the process of photosynthesis, particularly the role played by light. Therefore:

HA: Light is a fundamental factor for the photosynthetic process where it’s used to reduce carbon dioxide and break the water molecule. In this experiment, the hydrogen from the water molecule reacts with DCIP to reduce its blue color. The spectrophotometer is used to measure the intensity of the reduced color.

Ho: Light is not a fundamental factor in the process of photosynthesis and does not reduce carbon dioxide or break the water molecule to produce hydrogen used in the experiment to reduce DCIP’s blue color that is measured using a spectrophotometer.

Use of appropriate methods, tools, and technologies to collect quantitative data

In this experiment quantitative data was collected as optical density readings. The readings were taken at 600 nm after the spectrophotometer was blanked using cuvette 4 which had 3.0 ml of phosphate buffer (pH 6.5) 1.0 ml of chloroplast suspension and 50 μl of the 0.1% DPIP solution added and the reaction left to complete( color clears). The optical density reading for each cuvette was recorded against the time duration in the lab notebook.

Data Collection

Data collection is an important aspect for the success of any experiment, for this particular experiment, the data was collected by the use of a spectrophotometer. Every reaction was timed according to the manual and on expiry of the time duration, the optical density readings were taken using the spectrophotometer and recorded in the laboratory notebook for use in the tabulation and plotting of graphs for analysis.

Experiment: the hill reaction.

Time Optical Density
Curette 1 Cuvette2 Cuvette3 Cuvette4
2 0.626 0.632 0.66 0
4 0.628 0.548 0.66 0
6 0.614 0.47 0.66 0
8 0.608 0.364 0.66 0
10 0.614 0.287 0.66 0
12 0.614 0.202 0.66 0
14 0.614 0.132 0.66 0
16 0.614 0.074 0.66 0
18 0.614 0.043 0.66 0
20 0.614 0.017 0.66 0
22 0.614 0.008 0.66 0
24 0.614 0.014 0.66 0
26 0.614 0.009 0.66 0
28 0.614 0.009 0.66 0
30 0.614 0.009 0.66 0

Results of the Experiment

The results for the experimental were plotted as below

This experiment was designed to investigate the photosynthesis process in which light is utilized for energy production. In the hill reaction, the rate of photosynthesis remained the same for cuvettes 1 and 3, there was no evidence of photosynthetic activity in the fourth cuvette. In cuvette 5, the photosynthetic activity decreased with time. From the experiments, it is deduced that photosynthesis occurs in two stages, the light-dependent, and the light-independent stage. Generally, “in the first stage energy is captured and stored in the form of ATP and NADPH.” (Photosynthesis, 2000)

In the second stage light-independent stage the energy stored is used to process sugars using carbon. The results of this experiment agree with the hypothesis that light is a fundamental factor for the photosynthetic process where it’s used to reduce carbon dioxide and break the water molecule. In this experiment, the hydrogen from the water molecule reacts with DCIP to reduce its blue color. The spectrophotometer is used to measure the intensity of the reduced color

The experiment was carried out successfully and the results indicate that indeed plants manufacture their own food using sunlight as a source of energy. Therefore sunlight is an important factor in this process. However, the success of the practical was due to the experimental design which provided all the necessary material and conditions for the laboratory model of photosynthesis. A good experimental design gives results with minimal errors and thus can be used to conclude. “Validity refers how closeness the values are for repeated measures.”(Govindjee, 1997, p. 67) Replication of the above experiment gives results from which comparison can be drawn to give a test of validity for this experimental design.

The experiment can be replicated by another person provided he/she formulates a suitable experimental design that will include the identification, manipulation, and measurement of all the parameters in the investigation. The experimental design must be reliable and carefully selected to reduce the error margin to minimum values as this is an important aspect of this experiment.

Reference list

Govindjee, G. (1997). Experiments in plant biology. Berlin: Springer.

Photosynthesis. (2000). Web.

Cite this paper

  • Chicago (N-B)
  • Chicago (A-D)

StudyCorgi. (2021, November 30). The Process of Photosynthesis. https://studycorgi.com/the-process-of-photosynthesis/

"The Process of Photosynthesis." StudyCorgi , 30 Nov. 2021, studycorgi.com/the-process-of-photosynthesis/.

StudyCorgi . (2021) 'The Process of Photosynthesis'. 30 November.

1. StudyCorgi . "The Process of Photosynthesis." November 30, 2021. https://studycorgi.com/the-process-of-photosynthesis/.

Bibliography

StudyCorgi . "The Process of Photosynthesis." November 30, 2021. https://studycorgi.com/the-process-of-photosynthesis/.

StudyCorgi . 2021. "The Process of Photosynthesis." November 30, 2021. https://studycorgi.com/the-process-of-photosynthesis/.

This paper, “The Process of Photosynthesis”, was written and voluntary submitted to our free essay database by a straight-A student. Please ensure you properly reference the paper if you're using it to write your assignment.

Before publication, the StudyCorgi editorial team proofread and checked the paper to make sure it meets the highest standards in terms of grammar, punctuation, style, fact accuracy, copyright issues, and inclusive language. Last updated: November 30, 2021 .

If you are the author of this paper and no longer wish to have it published on StudyCorgi, request the removal . Please use the “ Donate your paper ” form to submit an essay.

Photosynthesis and Cellular Respiration Essay

  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment

Photosynthesis is one of the primary sources of energy for living organisms. The fossilized photosynthetic fuels account for almost 90% of the energy in the world (Johnson, 2016). Cellular respiration is a process that takes place in the living organism and converts nutrients into energy. This essay will examine photosynthesis and cellular respiration separately and identify similarities, differences, and interconnectedness between two processes. Two processes are similar in that they both deals with energy, but they are different because one process involves catabolic reactions and another anabolic one.

The purpose of photosynthesis is to convert atmospheric carbon dioxide into carbohydrates using light energy. The light splits one of the reactants, water in the mesophyll of the leaf into oxygen, electrons, and protons during the light-dependent phase (Johnson, 2016). Then carbon dioxide enters the mesophyll of the leaf through openings, stomata, during the light-independent phase. These two reactions differ in light utilization and molecules production. The first reaction products are oxygen, adenosine triphosphate (ATP), and nicotinamide adenine dinucleotide phosphate (NADPH) that are used as energy storages, while by the end of the second reaction, the carbohydrate is obtained, and molecules mentioned above are used (Flügge et al., 2016). Photosynthesis occurs in the chloroplast with the light-dependent reaction taking place in the thylakoid membrane, and light-independent reaction in the stroma. The energy produced in the light reaction is used to fix carbon dioxide and produce carbohydrates while oxygen is released outside. According to the following equation of the photosynthesis, C → O2 + 2H20 + photons (CH2O)n + electrons + O2 carbon monoxide and water are transferred into carbohydrates under the light with the release of atmospheric oxygen.

The purpose of cellular respiration is to convert nutrients into energy. The reactants of the respiration are glucose circulating in the blood and oxygen obtained from breathing, while the product is ATP. Cellular respiration starts from glycolysis in the mitochondria’s stroma, where the glucose is broken down into pyruvate (Bentley & Connaughton, 2017). Then it continues with the citric acid cycle that generates ATP, NADH, and FADH2. In the final stage, the electron transport chain uses these molecules to generate more ATP. The energy produced is then used for metabolic processes in the organism, while carbon dioxide is released with breathing (BBC Bitesize, n.d.). According to the following equation of the cellular respiration, C → 6H12O6 + 6O2 6CO2 + 6H2O the glucose is broken down into carbon dioxide and water with the presence of oxygen.

There are two main differences between photosynthesis and cellular respiration. The first one is the anabolic process, during which complex compounds are synthesized, while the second one is catabolic, which involves breaking down the compounds (Panawala, 2017). The second crucial difference is that photosynthesis is found only in chloroplasts, while cellular respiration is found in any living cell, making it a universal process. There are also two main similarities between photosynthesis and respiration. The first similarity is that both processes involve the production of ATP (Stauffer et al., 2018). The second similarity is that both processes utilize ATP but for different purposes.

Photosynthesis and cellular respiration are connected in such a way that they allow to perform metabolic functions normally. Moreover, these processes help to regulate the concentration of oxygen and carbon dioxide in the atmosphere. If photosynthesis stopped occurring, the level of oxygen would drop dramatically This would lead to deaths of all living organisms whose lives depend on this molecule. Whereas if cellular respiration stopped happening, living creatures would not be able to generate energy and sustain life.

To conclude, photosynthesis plays a crucial role in maintaining life on Earth. Photosynthesis uses light energy to produce oxygen, while cellular respiration uses oxygen to break down complex molecules and provide energy. These processes are different in their metabolic nature, but similar in terms of energy storage. If photosynthesis did not exist, the life for oxygen-dependent creatures would become extinct. Similarly, in the case of cellular respiration disappearing, living organisms would not be able to produce energy.

BBC Bitesize . (n.d.). Respiration. 2020. Web.

Bentley, M., & Connaughton, V, P. (2017). A simple way for students to visualize cellular respiration: Adapting the board game MousetrapTM to model complexity . CourseSource. 4, 1-6. Web.

Flügge, W., Westhoff, P., & Leister, D. (2016). Recent advances in understanding photosynthesis. F1000 Research, 5, 1-10.

Johnson, M. P. (2016). Photosynthesis. Essays Biochemistry , 60 (3), 255-273.

Panawala, L. (2017). Difference between photosynthesis and respiration. IE PEDIAA. Web.

Stauffer S., Gardner A., Ungu D.A.K., López-Córdoba A., & Heim M. (2018). Cellular respiration. In Labster virtual lab experiments: Basic biology (pp. 43-55). Springer.

  • Similarities and Differences of Photosynthesis and Cellular Respiration
  • Vespa Mandarinia as an Invasive Species: Overview
  • Anaerobic Respiration and Its Applications
  • Cell Energy Metabolism Controls
  • Recent Advances in Artificial Photosynthesis
  • Transgenic Organisms and Evolution
  • Punctuated Equilibrium: Arguments for and Against
  • Aspects of Biology Techniques
  • Shapes of Cells and Their Functions
  • From the Chemical Components to the Whole Body
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2022, February 21). Photosynthesis and Cellular Respiration. https://ivypanda.com/essays/photosynthesis-and-cellular-respiration/

"Photosynthesis and Cellular Respiration." IvyPanda , 21 Feb. 2022, ivypanda.com/essays/photosynthesis-and-cellular-respiration/.

IvyPanda . (2022) 'Photosynthesis and Cellular Respiration'. 21 February.

IvyPanda . 2022. "Photosynthesis and Cellular Respiration." February 21, 2022. https://ivypanda.com/essays/photosynthesis-and-cellular-respiration/.

1. IvyPanda . "Photosynthesis and Cellular Respiration." February 21, 2022. https://ivypanda.com/essays/photosynthesis-and-cellular-respiration/.

Bibliography

IvyPanda . "Photosynthesis and Cellular Respiration." February 21, 2022. https://ivypanda.com/essays/photosynthesis-and-cellular-respiration/.

IvyPanda uses cookies and similar technologies to enhance your experience, enabling functionalities such as:

  • Basic site functions
  • Ensuring secure, safe transactions
  • Secure account login
  • Remembering account, browser, and regional preferences
  • Remembering privacy and security settings
  • Analyzing site traffic and usage
  • Personalized search, content, and recommendations
  • Displaying relevant, targeted ads on and off IvyPanda

Please refer to IvyPanda's Cookies Policy and Privacy Policy for detailed information.

Certain technologies we use are essential for critical functions such as security and site integrity, account authentication, security and privacy preferences, internal site usage and maintenance data, and ensuring the site operates correctly for browsing and transactions.

Cookies and similar technologies are used to enhance your experience by:

  • Remembering general and regional preferences
  • Personalizing content, search, recommendations, and offers

Some functions, such as personalized recommendations, account preferences, or localization, may not work correctly without these technologies. For more details, please refer to IvyPanda's Cookies Policy .

To enable personalized advertising (such as interest-based ads), we may share your data with our marketing and advertising partners using cookies and other technologies. These partners may have their own information collected about you. Turning off the personalized advertising setting won't stop you from seeing IvyPanda ads, but it may make the ads you see less relevant or more repetitive.

Personalized advertising may be considered a "sale" or "sharing" of the information under California and other state privacy laws, and you may have the right to opt out. Turning off personalized advertising allows you to exercise your right to opt out. Learn more in IvyPanda's Cookies Policy and Privacy Policy .

  • Fundamentals NEW

Britannica Kids logo

  • Biographies
  • Compare Countries
  • World Atlas

photosynthesis

Trees and other plants get their food through the process of photosynthesis.

Photosynthesis requires sunlight, chlorophyll, water, and carbon dioxide gas. Chlorophyll is a substance in all green plants, especially in the leaves. Plants take in water from the soil and carbon dioxide from the air.

Photosynthesis starts when chlorophyll absorbs energy from sunlight. Green plants use this light energy to change water and carbon dioxide into oxygen and nutrients called sugars. The plants use some of the sugars and store the rest. The oxygen is released into the air.

Photosynthesis is very important because almost all living things depend on plants for food. Photosynthesis is also important because of the oxygen it produces. Humans and other animals need to breathe in oxygen to survive.

Some living things other than plants also make their own food through photosynthesis. They include certain types of bacteria and algae.

It’s here: the NEW Britannica Kids website!

We’ve been busy, working hard to bring you new features and an updated design. We hope you and your family enjoy the NEW Britannica Kids. Take a minute to check out all the enhancements!

  • The same safe and trusted content for explorers of all ages.
  • Accessible across all of today's devices: phones, tablets, and desktops.
  • Improved homework resources designed to support a variety of curriculum subjects and standards.
  • A new, third level of content, designed specially to meet the advanced needs of the sophisticated scholar.
  • And so much more!

inspire icon

Want to see it in action?

subscribe icon

Start a free trial

To share with more than one person, separate addresses with a comma

Choose a language from the menu above to view a computer-translated version of this page. Please note: Text within images is not translated, some features may not work properly after translation, and the translation may not accurately convey the intended meaning. Britannica does not review the converted text.

After translating an article, all tools except font up/font down will be disabled. To re-enable the tools or to convert back to English, click "view original" on the Google Translate toolbar.

  • Privacy Notice
  • Terms of Use
  • Biology Article
  • What is Photosynthesis

What Is Photosynthesis?

“Photosynthesis is the process used by green plants and a few organisms that use sunlight, carbon dioxide and water to prepare their food.”

The process of photosynthesis is used by plants, algae and certain bacteria that convert light energy into chemical energy. The glucose formed during the process of photosynthesis provides two important resources to organisms: energy and fixed carbon.

Read on to explore what is photosynthesis and the processes associated with it.

Site of Photosynthesis

Photosynthesis takes place in special organelles known as chloroplast. This organelle has its own DNA, genes and hence can synthesize its own proteins. Chloroplasts consist of stroma, fluid, and stack of thylakoids known as grana. There are three important pigments present in the chloroplast that absorb light energy, chlorophyll a, chlorophyll b, and carotenoids.

Also Read: Photosynthesis Process

Types of Photosynthesis

There are two different types of photosynthesis:

  • Oxygenic photosynthesis
  • Anoxygenic photosynthesis

Oxygenic Photosynthesis

Oxygenic photosynthesis is more common in plants, algae and cyanobacteria. During this process, electrons are transferred from water to carbon dioxide by light energy, to produce energy. During this transfer of electrons, carbon dioxide is reduced while water is oxidized, and oxygen is produced along with carbohydrates.

During this process, plants take in carbon dioxide and expel oxygen into the atmosphere.

This process can be represented by the equation:

6CO2+ 12H2O + LIGHT ENERGY → C6H12O6 + 6O2 + 6H2O

Anoxygenic Photosynthesis

This type of photosynthesis is usually seen in certain bacteria, such as green sulphur bacteria and purple bacteria which dwell in various aquatic habitats. Oxygen is not produced during the process.

The anoxygenic photosynthesis can be represented by the equation:

CO2 + 2H2A + LIGHT ENERGY → [CH2O] + 2A + H2O

Also Read:  Difference between Photosynthesis and Respiration

Photosynthesis Apparatus

The photosynthesis apparatus includes the following essential components:

Pigments not only provide colour to the photosynthetic organisms, but are also responsible for trapping sunlight. The important pigments associated with photosynthesis include:

  • Chlorophyll: It is a green-coloured pigment that traps blue and red light. Chlorophyll is subdivided into, “chlorophyll a”, “chlorophyll b”, and “chlorophyll c”. “Chlorophyll a” is widely present in all the photosynthetic cells. A bacterial variant of chlorophyll known as bacteriochlorophyll can absorb infrared rays .
  • Carotenoids: These are yellow, orange or red-coloured pigments that absorb bluish-green light. Xanthophyll and carotenes are examples of carotenoids.
  • Phycobilins: These are present in bacteria and red algae . These are red and blue pigments that absorb wavelength of light that are not properly absorbed by carotenoids and chlorophyll.

Plastids are organelles found in the cytoplasm of eukaryotic photosynthetic organisms. They contain pigments and can also store nutrients. Plastids are of three types:

  • Leucoplast: These are colourless, non-pigmented and can store fats and starch.
  • Chromoplasts: They contain carotenoids.
  • Chloroplasts: These contain chlorophyll and are the site of photosynthesis.

Antennae is the collection of 100 to 5000 pigment molecules that capture light energy from the sun in the form of photons. The light energy is transferred to a pigment-protein complex that converts light energy to chemical energy.

Reaction Centers

The pigment-protein complex responsible for the conversion of light energy to chemical energy forms the reaction centre.

Also Read: Photosynthesis

To know more about what is photosynthesis and other topics related to it, keep visiting BYJU’S website or download BYJU’S app for further reference.

Quiz Image

Put your understanding of this concept to test by answering a few MCQs. Click ‘Start Quiz’ to begin!

Select the correct answer and click on the “Finish” button Check your score and answers at the end of the quiz

Visit BYJU’S for all Biology related queries and study materials

Your result is as below

Request OTP on Voice Call

BIOLOGY Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Post My Comment

photosynthesis short essay

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Home — Essay Samples — Science — Light — Photosynthesis Process

test_template

Photosynthesis Process

  • Categories: Light Photosynthesis

About this sample

close

Words: 423 |

Published: Feb 12, 2019

Words: 423 | Page: 1 | 3 min read

Works Cited

  • Campbell, N. A., & Reece, J. B. (2008). Photosynthesis and cellular respiration. In Biology (8th ed., pp. 190-220). Benjamin-Cummings Publishing Company.
  • Taiz, L., & Zeiger, E. (2010). Photosynthesis: Carbon reactions. In Plant physiology (5th ed., pp. 174-207). Sinauer Associates.
  • Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2016). Photosynthesis and respiration. In Biology of Plants (8th ed., pp. 186-229). W. H. Freeman and Company.
  • Niyogi, K. K. (1999). Photoprotection revisited: Genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 333-359. doi:10.1146/annurev.arplant.50.1.333
  • Siedow, J. N., & Day, D. A. (2000). Respiration and photorespiration. In Plant physiology (3rd ed., pp. 500-548). Academic Press.
  • Allen, J. F. (2002). Photosynthesis and cellular respiration considered as coupled redox cycles: A chemiosmotic bridge linking two epochs. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1426), 707-717. doi:10.1098/rstb.2001.0993
  • Geigenberger, P. (2003). Response of plant metabolism to too little oxygen. Current Opinion in Plant Biology, 6(3), 247-256. doi:10.1016/S1369-5266(03)00038-8
  • Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 17(7), 1866-1875. doi:10.1105/tpc.105.033589
  • Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment, 28(3), 269-277. doi:10.1111/j.1365-3040.2005.01324.x
  • Sweetlove, L. J., & Fernie, A. R. (2018). The impact of oxidative stress on metabolism: A compartmental analysis. Frontiers in Plant Science, 9, 1647. doi:10.3389/fpls.2018.01647

Image of Alex Wood

Cite this Essay

To export a reference to this article please select a referencing style below:

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Dr Jacklynne

Verified writer

  • Expert in: Science

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

1 pages / 454 words

7 pages / 3323 words

2 pages / 963 words

1 pages / 644 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

Photosynthesis Process Essay

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Light

In the early 17th century, the fledgling English colonies in America presented a mixed reality of opportunity and hardship. One of the most poignant narratives from this era comes from Richard Frethorne, an indentured servant [...]

The light bulb greatly changed the world in many ways that continue to affect how individuals experience their lives today. Long ago using natural sources, for example, candles, lamps, and firewood were common ways of [...]

Rick Riordan's "The Lightning Thief," the first book in the "Percy Jackson & The Olympians" series, has captivated readers with its imaginative fusion of modern-day life and ancient Greek mythology. The narrative follows Percy [...]

Imagine a world with no light. We use light in our everyday lives. That’s why the importance of light bulb can not be overestimated. Without it we would would have to use oil lamps and candles, and that would be hard. If we [...]

Light arrives on our planet after a speedy trip from the Sun, 149 million km (93 million miles away). Light travels at 186,000 miles (300,000 km) per second, so the light you’re seeing now was still tucked away in the Sun about [...]

Throughout centuries many authors have written great novels. However, as time moves on certain pieces of literature may be forgotten or become irrelevant as it no longer appears to current generations. At times certain topics [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

photosynthesis short essay

What is Photosynthesis?

This essay will explain the process of photosynthesis, detailing how plants convert light energy into chemical energy. It will discuss the role of chlorophyll, the light-dependent and light-independent reactions, and the importance of photosynthesis in the Earth’s ecosystems. The piece will also consider the impact of photosynthesis on the environment and its significance in scientific research and sustainable development. At PapersOwl too, you can discover numerous free essay illustrations related to Cellular Respiration.

How it works

Photosynthesis is the process that transforms organisms from light energy into chemical energy. In order for photosynthesis to take place, it needs these three things: Water, carbon dioxide, and sunlight. As humans, in order to live plants, must take in gases. Plants are known as “”autotrophs, which means organisms that can make their own food.

The process of photosynthesis was created and developed Jan Ingenhousz, a British physician and scientist. Joseph Priestley was another scientist who contributed to the discovery of photosynthesis Jan also discovered that plants have cellular respiration just like animals.

Priestley discovered that plants absorb and make gases, he also identified “”gas like oxygen. Another fact that he discovered was, oxygen gives off more light than carbon dioxide that is given off in the dark.

Photosynthesis has two major stages, the light stage, and the dark stage. The light stage is used to make NADPH and ATP. NADPH gives the electrons to fix the carbon dioxide into carbohydrates. Dark reactions will not continue if plants are taken away from light for too long. “”Plants get carbon dioxide through their leaves and water from the ground through their roots, plants also make their own food from sunlight. During photosynthesis, plants make their own foods. The formula for photosynthesis is known as carbon dioxide + water + light energy oxygen + glucose.

Gases get gas through the process called respiration. Respiration is the process that cells use oxygen to break down sugar and absorb energy, it is the opposite of photosynthesis. During respiration, oxygen is joined with hydrogen to form water for plants. This process involves using the sugars that were made during photosynthesis to produce energy for the growth of a plant. During respiration, plants take up nutrients just to keep the plant cells from dying. The formula for respiration is known as, oxygen + glucose carbon dioxide + water + heat energy.

If there was no photosynthesis, we would not be alive today because there would be no oxygen or food for us to live. When it is daytime photosynthesis creates glucose and oxygen more quickly than respiration utilizes it. Photosynthesis occurs in the cells of plant leaves, it takes place in the chloroplasts. The cells in the plant take in light from the sun through chlorophyll. The stem and leaves of a plant have little holes called the stomata, this is where carbon dioxide enters the plant. When the carbon dioxide is sucked up by the leaves, water goes into the plant through the plant’s roots. When sunlight goes onto the leaves of a plant the chlorophyll traps the energy into the leaves and stores the energy.

The Calvin cycle is apart of photosynthesis, it is another word for light-independent reactions. The Calvin cycle is where chemical reactions occur in chloroplasts while photosynthesis is occurring. This cycle takes place in the stroma, this doesn’t need direct sunlight, the Calvin cycle also takes place at night time. ATP and NADPH are products of light reactions, ATP is present to be broken down to have energy released. NADPH is present to transform carbon dioxide molecules into glucose (sugars).

During darkness hours plants can’t perform photosynthesis so instead they do cellular respiration, which occurs in the mitochondria. During the dark reaction plants use carbon dioxide from the light-dependent reactions in order to produce glucose.

There are steps to photosynthesis in a plant of course but, what are these steps? You might ask. The first step is, the plant pulls up minerals and water from the ground’s roots, the second step is, leaves take in carbon dioxide, they do this to set free oxygen. The third step is the sunlight releases energy to the chloroplasts to create glucose which is sugar, the food. The last step is especially important because it provides energy for the plant so that it can produce sugars (glucose). When the sugar is made, it gets broken down by the mitochondria (used to produce energy in a cell) to produce energy for the growth of the plant.

Light-dependent reactions make molecules needed for the next stage of photosynthesis by using light energy, light energy is kinetic energy. Oxygen that is produced during the light-dependent reactions is released into the atmosphere. As said in paragraph 5, ATP and NADPH are products of light reactions moreover, are compounds and are made by sunlight being absorbed and converted into chemical energy. Light energy travels in waves and is a form of electromagnetic radiation. Pigments absorb the light that is used in the photosynthesis process.

In the 20th century, correlations between the photosynthetic procedures in green plants and in certain photosynthetic sulfur, microscopic organisms gave important data about the photosynthetic component. Sulfur microbes use hydrogen sulfide as a source of hydrogen and deliver sulfur rather than oxygen when photosynthesis is occurring. In the 1930’s, a Dutch biologist named Cornelis Van Niel recognized that the use of carbon dioxide in organic compounds in both photosynthetic organisms was similar. The biologist suggested that there were differences in the light-dependent stage and was used as a source for hydrogen atoms, Niel suggested that hydrogen should be transferred from hydrogen sulfide or into the water.

Overall, photosynthesis is a very complex process with steps involved. Photosynthesis is a very important part of life because it provides oxygen to all living things and living things need oxygen in order to survive. All organisms must grow and reproduce energy and without photosynthesis that wouldn’t be possible. The energy derived from the sun would be wasted without photosynthesis and would leave behind lifeless plants that we need on earth. Plants need photosynthesis and humans need plants, so where exactly would we be without photosynthesis?

owl

Cite this page

What is Photosynthesis?. (2019, Feb 03). Retrieved from https://papersowl.com/examples/what-is-photosynthesis/

"What is Photosynthesis?." PapersOwl.com , 3 Feb 2019, https://papersowl.com/examples/what-is-photosynthesis/

PapersOwl.com. (2019). What is Photosynthesis? . [Online]. Available at: https://papersowl.com/examples/what-is-photosynthesis/ [Accessed: 16 Sep. 2024]

"What is Photosynthesis?." PapersOwl.com, Feb 03, 2019. Accessed September 16, 2024. https://papersowl.com/examples/what-is-photosynthesis/

"What is Photosynthesis?," PapersOwl.com , 03-Feb-2019. [Online]. Available: https://papersowl.com/examples/what-is-photosynthesis/. [Accessed: 16-Sep-2024]

PapersOwl.com. (2019). What is Photosynthesis? . [Online]. Available at: https://papersowl.com/examples/what-is-photosynthesis/ [Accessed: 16-Sep-2024]

Don't let plagiarism ruin your grade

Hire a writer to get a unique paper crafted to your needs.

owl

Our writers will help you fix any mistakes and get an A+!

Please check your inbox.

You can order an original essay written according to your instructions.

Trusted by over 1 million students worldwide

1. Tell Us Your Requirements

2. Pick your perfect writer

3. Get Your Paper and Pay

Hi! I'm Amy, your personal assistant!

Don't know where to start? Give me your paper requirements and I connect you to an academic expert.

short deadlines

100% Plagiarism-Free

Certified writers

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Portland Press Open Access

Logo of portlandopen

Photosynthesis

Matthew p. johnson.

Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.

Photosynthesis sustains virtually all life on planet Earth providing the oxygen we breathe and the food we eat; it forms the basis of global food chains and meets the majority of humankind's current energy needs through fossilized photosynthetic fuels. The process of photosynthesis in plants is based on two reactions that are carried out by separate parts of the chloroplast. The light reactions occur in the chloroplast thylakoid membrane and involve the splitting of water into oxygen, protons and electrons. The protons and electrons are then transferred through the thylakoid membrane to create the energy storage molecules adenosine triphosphate (ATP) and nicotinomide–adenine dinucleotide phosphate (NADPH). The ATP and NADPH are then utilized by the enzymes of the Calvin–Benson cycle (the dark reactions), which converts CO 2 into carbohydrate in the chloroplast stroma. The basic principles of solar energy capture, energy, electron and proton transfer and the biochemical basis of carbon fixation are explained and their significance is discussed.

An overview of photosynthesis

Introduction.

Photosynthesis is the ultimate source of all of humankind's food and oxygen, whereas fossilized photosynthetic fuels provide ∼87% of the world's energy. It is the biochemical process that sustains the biosphere as the basis for the food chain. The oxygen produced as a by-product of photosynthesis allowed the formation of the ozone layer, the evolution of aerobic respiration and thus complex multicellular life.

Oxygenic photosynthesis involves the conversion of water and CO 2 into complex organic molecules such as carbohydrates and oxygen. Photosynthesis may be split into the ‘light’ and ‘dark’ reactions. In the light reactions, water is split using light into oxygen, protons and electrons, and in the dark reactions, the protons and electrons are used to reduce CO 2 to carbohydrate (given here by the general formula CH 2 O). The two processes can be summarized thus:

Light reactions:

Dark reactions:

The positive sign of the standard free energy change of the reaction (Δ G °) given above means that the reaction requires energy ( an endergonic reaction ). The energy required is provided by absorbed solar energy, which is converted into the chemical bond energy of the products ( Box 1 ).

Standard free energy change

An external file that holds a picture, illustration, etc.
Object name is bse0600255box1.jpg

Photosynthesis converts ∼200 billion tonnes of CO 2 into complex organic compounds annually and produces ∼140 billion tonnes of oxygen into the atmosphere. By facilitating conversion of solar energy into chemical energy, photosynthesis acts as the primary energy input into the global food chain. Nearly all living organisms use the complex organic compounds derived from photosynthesis as a source of energy. The breakdown of these organic compounds occurs via the process of aerobic respiration, which of course also requires the oxygen produced by photosynthesis.

Unlike photosynthesis, aerobic respiration is an exergonic process (negative Δ G °) with the energy released being used by the organism to power biosynthetic processes that allow growth and renewal, mechanical work (such as muscle contraction or flagella rotation) and facilitating changes in chemical concentrations within the cell (e.g. accumulation of nutrients and expulsion of waste). The use of exergonic reactions to power endergonic ones associated with biosynthesis and housekeeping in biological organisms such that the overall free energy change is negative is known as ‘ coupling’.

Photosynthesis and respiration are thus seemingly the reverse of one another, with the important caveat that both oxygen formation during photosynthesis and its utilization during respiration result in its liberation or incorporation respectively into water rather than CO 2 . In addition, glucose is one of several possible products of photosynthesis with amino acids and lipids also being synthesized rapidly from the primary photosynthetic products.

The consideration of photosynthesis and respiration as opposing processes helps us to appreciate their role in shaping our environment. The fixation of CO 2 by photosynthesis and its release during breakdown of organic molecules during respiration, decay and combustion of organic matter and fossil fuels can be visualized as the global carbon cycle ( Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig1.jpg

The relationship between respiration, photosynthesis and global CO 2 and O 2 levels.

At present, this cycle may be considered to be in a state of imbalance due to the burning of fossil fuels (fossilized photosynthesis), which is increasing the proportion of CO 2 entering the Earth's atmosphere, leading to the so-called ‘greenhouse effect’ and human-made climate change.

Oxygenic photosynthesis is thought to have evolved only once during Earth's history in the cyanobacteria. All other organisms, such as plants, algae and diatoms, which perform oxygenic photosynthesis actually do so via cyanobacterial endosymbionts or ‘chloroplasts’. An endosymbiotoic event between an ancestral eukaryotic cell and a cyanobacterium that gave rise to plants is estimated to have occurred ∼1.5 billion years ago. Free-living cyanobacteria still exist today and are responsible for ∼50% of the world's photosynthesis. Cyanobacteria themselves are thought to have evolved from simpler photosynthetic bacteria that use either organic or inorganic compounds such a hydrogen sulfide as a source of electrons rather than water and thus do not produce oxygen.

The site of photosynthesis in plants

In land plants, the principal organs of photosynthesis are the leaves ( Figure 2 A). Leaves have evolved to expose the largest possible area of green tissue to light and entry of CO 2 to the leaf is controlled by small holes in the lower epidermis called stomata ( Figure 2 B). The size of the stomatal openings is variable and regulated by a pair of guard cells, which respond to the turgor pressure (water content) of the leaf, thus when the leaf is hydrated, the stomata can open to allow CO 2 in. In contrast, when water is scarce, the guard cells lose turgor pressure and close, preventing the escape of water from the leaf via transpiration.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig2.jpg

( A ) The model plant Arabidopsis thaliana . ( B ) Basic structure of a leaf shown in cross-section. Chloroplasts are shown as green dots within the cells. ( C ) An electron micrograph of an Arabidopsis chloroplast within the leaf. ( D ) Close-up region of the chloroplast showing the stacked structure of the thylakoid membrane.

Within the green tissue of the leaf (mainly the mesophyll) each cell (∼100 μm in length) contains ∼100 chloroplasts (2–3 μm in length), the tiny organelles where photosynthesis takes place. The chloroplast has a complex structure ( Figure 2 C, D) with two outer membranes (the envelope), which are colourless and do not participate in photosynthesis, enclosing an aqueous space (the stroma) wherein sits a third membrane known as the thylakoid, which in turn encloses a single continuous aqueous space called the lumen.

The light reactions of photosynthesis involve light-driven electron and proton transfers, which occur in the thylakoid membrane, whereas the dark reactions involve the fixation of CO 2 into carbohydrate, via the Calvin–Benson cycle, which occurs in the stroma ( Figure 3 ). The light reactions involve electron transfer from water to NADP + to form NADPH and these reactions are coupled to proton transfers that lead to the phosphorylation of adenosine diphosphate (ADP) into ATP. The Calvin–Benson cycle uses ATP and NADPH to convert CO 2 into carbohydrates ( Figure 3 ), regenerating ADP and NADP + . The light and dark reactions are therefore mutually dependent on one another.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig3.jpg

The light reactions of photosynthesis take place in the thylakoid membrane, whereas the dark reactions are located in the chloroplast stroma.

Photosynthetic electron and proton transfer chain

The light-driven electron transfer reactions of photosynthesis begin with the splitting of water by Photosystem II (PSII). PSII is a chlorophyll–protein complex embedded in the thylakoid membrane that uses light to oxidize water to oxygen and reduce the electron acceptor plastoquinone to plastoquinol. Plastoquinol in turn carries the electrons derived from water to another thylakoid-embedded protein complex called cytochrome b 6 f (cyt b 6 f ). cyt b 6 f oxidizes plastoquinol to plastoquinone and reduces a small water-soluble electron carrier protein plastocyanin, which resides in the lumen. A second light-driven reaction is then carried out by another chlorophyll protein complex called Photosystem I (PSI). PSI oxidizes plastocyanin and reduces another soluble electron carrier protein ferredoxin that resides in the stroma. Ferredoxin can then be used by the ferredoxin–NADP + reductase (FNR) enzyme to reduce NADP + to NADPH. This scheme is known as the linear electron transfer pathway or Z-scheme ( Figure 4 ).

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig4.jpg

The linear electron transfer pathway from water to NADP + to form NADPH results in the formation of a proton gradient across the thylakoid membrane that is used by the ATP synthase enzyme to make ATP.

The Z-scheme, so-called since it resembles the letter ‘Z’ when turned on its side ( Figure 5 ), thus shows how the electrons move from the water–oxygen couple (+820 mV) via a chain of redox carriers to NADP + /NADPH (−320 mV) during photosynthetic electron transfer. Generally, electrons are transferred from redox couples with low potentials (good reductants) to those with higher potentials (good oxidants) (e.g. during respiratory electron transfer in mitochondria) since this process is exergonic (see Box 2 ). However, photosynthetic electron transfer also involves two endergonic steps, which occur at PSII and at PSI and require an energy input in the form of light. The light energy is used to excite an electron within a chlorophyll molecule residing in PSII or PSI to a higher energy level; this excited chlorophyll is then able to reduce the subsequent acceptors in the chain. The oxidized chlorophyll is then reduced by water in the case of PSII and plastocyanin in the case of PSI.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig5.jpg

The main components of the linear electron transfer pathway are shown on a scale of redox potential to illustrate how two separate inputs of light energy at PSI and PSII result in the endergonic transfer of electrons from water to NADP + .

Relationship between redox potentials and standard free energy changes

An external file that holds a picture, illustration, etc.
Object name is bse0600255box2.jpg

The water-splitting reaction at PSII and plastoquinol oxidation at cyt b 6 f result in the release of protons into the lumen, resulting in a build-up of protons in this compartment relative to the stroma. The difference in the proton concentration between the two sides of the membrane is called a proton gradient. The proton gradient is a store of free energy (similar to a gradient of ions in a battery) that is utilized by a molecular mechanical motor ATP synthase, which resides in the thylakoid membrane ( Figure 4 ). The ATP synthase allows the protons to move down their concentration gradient from the lumen (high H + concentration) to the stroma (low H + concentration). This exergonic reaction is used to power the endergonic synthesis of ATP from ADP and inorganic phosphate (P i ). This process of photophosphorylation is thus essentially similar to oxidative phosphorylation, which occurs in the inner mitochondrial membrane during respiration.

An alternative electron transfer pathway exists in plants and algae, known as cyclic electron flow. Cyclic electron flow involves the recycling of electrons from ferredoxin to plastoquinone, with the result that there is no net production of NADPH; however, since protons are still transferred into the lumen by oxidation of plastoquinol by cyt b 6 f , ATP can still be formed. Thus photosynthetic organisms can control the ratio of NADPH/ATP to meet metabolic need by controlling the relative amounts of cyclic and linear electron transfer.

How the photosystems work

Light absorption by pigments.

Photosynthesis begins with the absorption of light by pigments molecules located in the thylakoid membrane. The most well-known of these is chlorophyll, but there are also carotenoids and, in cyanobacteria and some algae, bilins. These pigments all have in common within their chemical structures an alternating series of carbon single and double bonds, which form a conjugated system π–electron system ( Figure 6 ).

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig6.jpg

The chemical structures of the chlorophyll and carotenoid pigments present in the thylakoid membrane. Note the presence in each of a conjugated system of carbon–carbon double bonds that is responsible for light absorption.

The variety of pigments present within each type of photosynthetic organism reflects the light environment in which it lives; plants on land contain chlorophylls a and b and carotenoids such as β-carotene, lutein, zeaxanthin, violaxanthin, antheraxanthin and neoxanthin ( Figure 6 ). The chlorophylls absorb blue and red light and so appear green in colour, whereas carotenoids absorb light only in the blue and so appear yellow/red ( Figure 7 ), colours more obvious in the autumn as chlorophyll is the first pigment to be broken down in decaying leaves.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig7.jpg

Chlorophylls absorb light energy in the red and blue part of the visible spectrum, whereas carotenoids only absorb light in the blue/green.

Light, or electromagnetic radiation, has the properties of both a wave and a stream of particles (light quanta). Each quantum of light contains a discrete amount of energy that can be calculated by multiplying Planck's constant, h (6.626×10 −34 J·s) by ν, the frequency of the radiation in cycles per second (s −1 ):

The frequency (ν) of the light and so its energy varies with its colour, thus blue photons (∼450 nm) are more energetic than red photons (∼650 nm). The frequency (ν) and wavelength (λ) of light are related by:

where c is the velocity of light (3.0×10 8 m·s −1 ), and the energy of a particular wavelength (λ) of light is given by:

Thus 1 mol of 680 nm photons of red light has an energy of 176 kJ·mol −1 .

The electrons within the delocalized π system of the pigment have the ability to jump up from the lowest occupied molecular orbital (ground state) to higher unoccupied molecular electron orbitals (excited states) via the absorption of specific wavelengths of light in the visible range (400–725 nm). Chlorophyll has two excited states known as S 1 and S 2 and, upon interaction of the molecule with a photon of light, one of its π electrons is promoted from the ground state (S 0 ) to an excited state, a process taking just 10 −15 s ( Figure 8 ). The energy gap between the S 0 and S 1 states is spanned by the energy provided by a red photon (∼600–700 nm), whereas the energy gap between the S 0 and S 2 states is larger and therefore requires a more energetic (shorter wavelength, higher frequency) blue photon (∼400–500 nm) to span the energy gap.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig8.jpg

Photons with slightly different energies (colours) excite each of the vibrational substates of each excited state (as shown by variation in the size and colour of the arrows).

Upon excitation, the electron in the S 2 state quickly undergoes losses of energy as heat through molecular vibration and undergoes conversion into the energy of the S 1 state by a process called internal conversion. Internal conversion occurs on a timescale of 10 −12 s. The energy of a blue photon is thus rapidly degraded to that of a red photon. Excitation of the molecule with a red photon would lead to promotion of an electron to the S 1 state directly. Once the electron resides in the S 1 state, it is lower in energy and thus stable on a somewhat longer timescale (10 −9 s). The energy of the excited electron in the S 1 state can have one of several fates: it could return to the ground state (S 0 ) by emission of the energy as a photon of light (fluorescence), or it could be lost as heat due to internal conversion between S 1 and S 0 . Alternatively, if another chlorophyll is nearby, a process known as excitation energy transfer (EET) can result in the non-radiative exchange of energy between the two molecules ( Figure 9 ). For this to occur, the two chlorophylls must be close by (<7 nm), have a specific orientation with respect to one another, and excited state energies that overlap (are resonant) with one another. If these conditions are met, the energy is exchanged, resulting in a mirror S 0 →S 1 transition in the acceptor molecule and a S 1 →S 0 transition in the other.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig9.jpg

Two chlorophyll molecules with resonant S 1 states undergo a mirror transition resulting in the non-radiative transfer of excitation energy between them.

Light-harvesting complexes

In photosynthetic systems, chlorophylls and carotenoids are found attached to membrane-embedded proteins known as light-harvesting complexes (LHCs). Through careful binding and orientation of the pigment molecules, absorbed energy can be transferred among them by EET. Each pigment is bound to the protein by a series of non-covalent bonding interactions (such as, hydrogen bonds, van der Waals interactions, hydrophobic interaction and co-ordination bonds between lone pair electrons of residues such as histidine in the protein and the Mg 2+ ion in chlorophyll); the protein structure is such that each bound pigment experiences a slightly different environment in terms of the surrounding amino acid side chains, lipids, etc., meaning that the S 1 and S 2 energy levels are shifted in energy with respect to that of other neighbouring pigment molecules. The effect is to create a range of pigment energies that act to ‘funnel’ the energy on to the lowest-energy pigments in the LHC by EET.

Reaction centres

A photosystem consists of numerous LHCs that form an antenna of hundreds of pigment molecules. The antenna pigments act to collect and concentrate excitation energy and transfer it towards a ‘special pair’ of chlorophyll molecules that reside in the reaction centre (RC) ( Figure 10 ). Unlike the antenna pigments, the special pair of chlorophylls are ‘redox-active’ in the sense that they can return to the ground state (S 0 ) by the transfer of the electron residing in the S 1 excited state (Chl*) to another species. This process is known as charge separation and result in formation of an oxidized special pair (Chl + ) and a reduced acceptor (A − ). The acceptor in PSII is plastoquinone and in PSI it is ferredoxin. If the RC is to go on functioning, the electron deficiency on the special pair must be made good, in PSII the electron donor is water and in PSI it is plastocyanin.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig10.jpg

Light energy is captured by the antenna pigments and transferred to the special pair of RC chlorophylls which undergo a redox reaction leading to reduction of an acceptor molecule. The oxidized special pair is regenerated by an electron donor.

It is worth asking why photosynthetic organisms bother to have a large antenna of pigments serving an RC rather than more numerous RCs. The answer lies in the fact that the special pair of chlorophylls alone have a rather small spatial and spectral cross-section, meaning that there is a limit to the amount of light they can efficiently absorb. The amount of light they can practically absorb is around two orders of magnitude smaller than their maximum possible turnover rate, Thus LHCs act to increase the spatial (hundreds of pigments) and spectral (several types of pigments with different light absorption characteristics) cross-section of the RC special pair ensuring that its turnover rate runs much closer to capacity.

Photosystem II

PSII is a light-driven water–plastoquinone oxidoreductase and is the only enzyme in Nature that is capable of performing the difficult chemistry of splitting water into protons, electrons and oxygen ( Figure 11 ). In principle, water is an extremely poor electron donor since the redox potential of the water–oxygen couple is +820 mV. PSII uses light energy to excite a special pair of chlorophylls, known as P680 due to their 680 nm absorption peak in the red part of the spectrum. P680* undergoes charge separation that results in the formation of an extremely oxidizing species P680 + which has a redox potential of +1200 mV, sufficient to oxidize water. Nonetheless, since water splitting involves four electron chemistry and charge separation only involves transfer of one electron, four separate charge separations (turnovers of PSII) are required to drive formation of one molecule of O 2 from two molecules of water. The initial electron donation to generate the P680 from P680 + is therefore provided by a cluster of manganese ions within the oxygen-evolving complex (OEC), which is attached to the lumen side of PSII ( Figure 12 ). Manganese is a transition metal that can exist in a range of oxidation states from +1 to +5 and thus accumulates the positive charges derived from each light-driven turnover of P680. Progressive extraction of electrons from the manganese cluster is driven by the oxidation of P680 within PSII by light and is known as the S-state cycle ( Figure 12 ). After the fourth turnover of P680, sufficient positive charge is built up in the manganese cluster to permit the splitting of water into electrons, which regenerate the original state of the manganese cluster, protons, which are released into the lumen and contribute to the proton gradient used for ATP synthesis, and the by-product O 2 . Thus charge separation at P680 provides the thermodynamic driving force, whereas the manganese cluster acts as a catalyst for the water-splitting reaction.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig11.jpg

The organization of PSII and its light-harvesting antenna. Protein is shown in grey, with chlorophylls in green and carotenoids in orange. Drawn from PDB code 3JCU

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig12.jpg

Progressive extraction of electrons from the manganese cluster is driven by the oxidation of P680 within PSII by light. Each of the electrons given up by the cluster is eventually repaid at the S 4 to S 0 transition when molecular oxygen (O 2 ) is formed. The protons extracted from water during the process are deposited into the lumen and contribute to the protonmotive force.

The electrons yielded by P680* following charge separation are not passed directly to plastoquinone, but rather via another acceptor called pheophytin, a porphyrin molecule lacking the central magnesium ion as in chlorophyll. Plastoquinone reduction to plastoquinol requires two electrons and thus two molecules of plastoquinol are formed per O 2 molecule evolved by PSII. Two protons are also taken up upon formation of plastoquinol and these are derived from the stroma. PSII is found within the thylakoid membrane of plants as a dimeric RC complex surrounded by a peripheral antenna of six minor monomeric antenna LHC complexes and two to eight trimeric LHC complexes, which together form a PSII–LHCII supercomplex ( Figure 11 ).

Photosystem I

PSI is a light-driven plastocyanin–ferredoxin oxidoreductase ( Figure 13 ). In PSI, the special pair of chlorophylls are known as P700 due to their 700 nm absorption peak in the red part of the spectrum. P700* is an extremely strong reductant that is able to reduce ferredoxin which has a redox potential of −450 mV (and is thus is, in principle, a poor electron acceptor). Reduced ferredoxin is then used to generate NADPH for the Calvin–Benson cycle at a separate complex known as FNR. The electron from P700* is donated via another chlorophyll molecule and a bound quinone to a series of iron–sulfur clusters at the stromal side of the complex, whereupon the electron is donated to ferredoxin. The P700 species is regenerated form P700 + via donation of an electron from the soluble electron carrier protein plastocyanin.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig13.jpg

The organization of PSI and its light-harvesting antenna. Protein is shown in grey, with chlorophylls in green and carotenoids in orange. Drawn from PDB code 4XK8.

PSI is found within the thylakoid membrane as a monomeric RC surrounded on one side by four LHC complexes known as LHCI. The PSI–LHCI supercomplex is found mainly in the unstacked regions of the thylakoid membrane ( Figure 13 ).

Other electron transfer chain components

Plastoquinone/plastoquinol.

Plastoquinone is a small lipophilic electron carrier molecule that resides within the thylakoid membrane and carries two electrons and two protons from PSII to the cyt b 6 f complex. It has a very similar structure to that of the molecule ubiquinone (coenzyme Q 10 ) in the mitochondrial inner membrane.

Cytochrome b 6 f complex

The cyt b 6 f complex is a plastoquinol–plastocyanin oxidoreductase and possess a similar structure to that of the cytochrome bc 1 complex (complex III) in mitochondria ( Figure 14 A). As with Complex III, cyt b 6 f exists as a dimer in the membrane and carries out both the oxidation and reduction of quinones via the so-called Q-cycle. The Q-cycle ( Figure 14 B) involves oxidation of one plastoquinol molecule at the Qp site of the complex, both protons from this molecule are deposited in the lumen and contribute to the proton gradient for ATP synthesis. The two electrons, however, have different fates. The first is transferred via an iron–sulfur cluster and a haem cofactor to the soluble electron carrier plastocyanin (see below). The second electron derived from plastoquinol is passed via two separate haem cofactors to another molecule of plastoquinone bound to a separate site (Qn) on the complex, thus reducing it to a semiquinone. When a second plastoquinol molecule is oxidized at Qp, a second molecule of plastocyanin is reduced and two further protons are deposited in the lumen. The second electron reduces the semiquinone at the Qn site which, concomitant with uptake of two protons from the stroma, causes its reduction to plastoquinol. Thus for each pair of plastoquinol molecules oxidized by the complex, one is regenerated, yet all four protons are deposited into the lumen. The Q-cycle thus doubles the number of protons transferred from the stroma to the lumen per plastoquinol molecule oxidized.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig14.jpg

( A ) Structure drawn from PDB code 1Q90. ( B ) The protonmotive Q-cycle showing how electrons from plastoquinol are passed to both plastocyanin and plastoquinone, doubling the protons deposited in the lumen for every plastoquinol molecule oxidized by the complex.

Plastocyanin

Plastocyanin is a small soluble electron carrier protein that resides in the thylakoid lumen. The active site of the plastocyanin protein binds a copper ion, which cycles between the Cu 2+ and Cu + oxidation states following its oxidation by PSI and reduction by cyt b 6 f respectively.

Ferredoxin is a small soluble electron carrier protein that resides in the chloroplast stroma. The active site of the ferredoxin protein binds an iron–sulfur cluster, which cycles between the Fe 2+ and Fe 3+ oxidation states following its reduction by PSI and oxidation by the FNR complex respectively.

Ferredoxin–NADP + reductase

The FNR complex is found in both soluble and thylakoid membrane-bound forms. The complex binds a flavin–adenine dinucleotide (FAD) cofactor at its active site, which accepts two electrons from two molecules of ferredoxin before using them reduce NADP + to NADPH.

ATP synthase

The ATP synthase enzyme is responsible for making ATP from ADP and P i ; this endergonic reaction is powered by the energy contained within the protonmotive force. According to the structure, 4.67 H + are required for every ATP molecule synthesized by the chloroplast ATP synthase. The enzyme is a rotary motor which contains two domains: the membrane-spanning F O portion which conducts protons from the lumen to the stroma, and the F 1 catalytic domain that couples this exergonic proton movement to ATP synthesis.

Membrane stacking and the regulation of photosynthesis

Within the thylakoid membrane, PSII–LHCII supercomplexes are packed together into domains known as the grana, which associate with one another to form grana stacks. PSI and ATP synthase are excluded from these stacked PSII–LHCII regions by steric constraints and thus PSII and PSI are segregated in the thylakoid membrane between the stacked and unstacked regions ( Figure 15 ). The cyt b 6 f complex, in contrast, is evenly distributed throughout the grana and stromal lamellae. The evolutionary advantage of membrane stacking is believed to be a higher efficiency of electron transport by preventing the fast energy trap PSI from ‘stealing’ excitation energy from the slower trap PSII, a phenomenon known as spillover. Another possible advantage of membrane stacking in thylakoids may be the segregation of the linear and cyclic electron transfer pathways, which might otherwise compete to reduce plastoquinone. In this view, PSII, cyt b 6 f and a sub-fraction of PSI closest to the grana is involved in linear flow, whereas PSI and cyt b 6 f in the stromal lamellae participates in cyclic flow. The cyclic electron transfer pathway recycles electrons from ferredoxin back to plastoquinone and thus allows protonmotive force generation (and ATP synthesis) without net NADPH production. Cyclic electron transfer thereby provides the additional ATP required for the Calvin–Benson cycle (see below).

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig15.jpg

( A ) Electron micrograph of the thylakoid membrane showing stacked grana and unstacked stromal lamellae regions. ( B ) Model showing the distribution of the major complexes of photosynthetic electron and proton transfer between the stacked grana and unstacked stromal lamellae regions.

‘Dark’ reactions: the Calvin–Benson cycle

CO 2 is fixed into carbohydrate via the Calvin–Benson cycle in plants, which consumes the ATP and NADPH produced during the light reactions and thus in turn regenerates ADP, P i and NADP + . In the first step of the Calvin–Benson cycle ( Figure 16 ), CO 2 is combined with a 5-carbon (5C) sugar, ribulose 1,5-bisphosphate in a reaction catalysed by the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The reaction forms an unstable 6C intermediate that immediately splits into two molecules of 3-phosphoglycerate. 3-Phosphoglycerate is first phosphorylated by 3-phosphoglycerate kinase using ATP to form 1,3-bisphosphoglycerate. 1,3-Bisphosphoglycerate is then reduced by glyceraldehyde 3-phosphate dehydrogenase using NADPH to form glyceraldehyde 3-phosphate (GAP, a triose or 3C sugar) in reactions, which are the reverse of glycolysis. For every three CO 2 molecules initially combined with ribulose 1,5-bisphopshate, six molecules of GAP are produced by the subsequent steps. However only one of these six molecules can be considered as a product of the Calvin–Benson cycle since the remaining five are required to regenerate ribulose 1,5-bisphosphate in a complex series of reactions that also require ATP. The one molecule of GAP that is produced for each turn of the cycle can be quickly converted by a range of metabolic pathways into amino acids, lipids or sugars such as glucose. Glucose in turn may be stored as the polymer starch as large granules within chloroplasts.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig16.jpg

Overview of the biochemical pathway for the fixation of CO 2 into carbohydrate in plants.

A complex biochemical ‘dance’ ( Figure 16 ) is then involved in the regeneration of three ribulose 1,5-bisphosphate (5C) from the remaining five GAP (3C) molecules. The regeneration begins with the conversion of two molecules of GAP into dihydroxyacetone phosphate (DHAP) by triose phosphate isomerase; one of the DHAP molecules is the combined with another GAP molecule to make fructose 1,6-bisphosphate (6C) by aldolase. The fructose 1,6-bisphosphate is then dephosphorylated by fructose-1,6-bisphosphatase to yield fructose 6-phosphate (6C) and releasing P i . Two carbons are then removed from fructose 6-phosphate by transketolase, generating erythrose 4-phosphate (4C); the two carbons are transferred to another molecule of GAP generating xylulose 5-phosphate (5C). Another DHAP molecule, formed from GAP by triose phosphate isomerase is then combined with the erythrose 4-phosphate by aldolase to form sedoheptulose 1,7-bisphosphate (7C). Sedoheptulose 1,7-bisphosphate is then dephosphorylated to sedoheptulose 7-phosphate (7C) by sedoheptulose-1,7-bisphosphatase releasing P i . Sedoheptulose 7-phosphate has two carbons removed by transketolase to produce ribose 5-phosphate (5C) and the two carbons are transferred to another GAP molecule producing another xylulose 5-phosphate (5C). Ribose 5-phosphate and the two molecules of xylulose 5-phosphate (5C) are then converted by phosphopentose isomerase to three molecules of ribulose 5-phosphate (5C). The three ribulose 5-phosphate molecules are then phosphorylated using three ATP by phosphoribulokinase to regenerate three ribulose 1,5-bisphosphate (5C).

Overall the synthesis of 1 mol of GAP requires 9 mol of ATP and 6 mol of NADPH, a required ratio of 1.5 ATP/NADPH. Linear electron transfer is generally thought to supply ATP/NADPH in a ratio of 1.28 (assuming an H + /ATP ratio of 4.67) with the shortfall of ATP believed to be provided by cyclic electron transfer reactions. Since the product of the Calvin cycle is GAP (a 3C sugar) the pathway is often referred to as C 3 photosynthesis and plants that utilize it are called C 3 plants and include many of the world's major crops such as rice, wheat and potato.

Many of the enzymes involved in the Calvin–Benson cycle (e.g. transketolase, glyceraldehyde-3-phosphate dehydrogenase and aldolase) are also involved in the glycolysis pathway of carbohydrate degradation and their activity must therefore be carefully regulated to avoid futile cycling when light is present, i.e. the unwanted degradation of carbohydrate. The regulation of the Calvin–Benson cycle enzymes is achieved by the activity of the light reactions, which modify the environment of the dark reactions (i.e. the stroma). Proton gradient formation across the thylakoid membrane during the light reactions increases the pH and also increases the Mg 2+ concentration in the stroma (as Mg 2+ flows out of the lumen as H + flows in to compensate for the influx of positive charges). In addition, by reducing ferredoxin and NADP + , PSI changes the redox state of the stroma, which is sensed by the regulatory protein thioredoxin. Thioredoxin, pH and Mg 2+ concentration play a key role in regulating the activity of the Calvin–Benson cycle enzymes, ensuring the activity of the light and dark reactions is closely co-ordinated.

It is noteworthy that, despite the complexity of the dark reactions outlined above, the carbon fixation step itself (i.e. the incorporation of CO 2 into carbohydrate) is carried out by a single enzyme, Rubisco. Rubisco is a large multisubunit soluble protein complex found in the chloroplast stroma. The complex consists of eight large (56 kDa) subunits, which contain both catalytic and regulatory domains, and eight small subunits (14 kDa), which enhance the catalytic function of the L subunits ( Figure 17 A). The carboxylation reaction carried out by Rubisco is highly exergonic (Δ G °=−51.9 kJ·mol- 1 ), yet kinetically very slow (just 3 s −1 ) and begins with the protonation of ribulose 1,5-bisphosphate to form an enediolate intermediate which can be combined with CO 2 to form an unstable 6C intermediate that is quickly hydrolysed to yield two 3C 3-phosphoglycerate molecules. The active site in the Rubisco enzyme contains a key lysine residue, which reacts with another (non-substrate) molecule of CO 2 to form a carbamate anion that is then able to bind Mg 2+ . The Mg 2+ in the active site is essential for the catalytic function of Rubisco, playing a key role in binding ribulose 1,5-bisphosphate and activating it such that it readily reacts with CO 2.. Rubisco activity is co-ordinated with that of the light reactions since carbamate formation requires both high Mg 2+ concentration and alkaline conditions, which are provided by the light-driven changes in the stromal environment discussed above ( Figure 17 B).

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig17.jpg

( A ) Structure of the Rubisco enzyme (the large subunits are shown in blue and the small subunits in green); four of each type of subunit are visible in the image. Drawn from PDB code 1RXO. ( B ) Activation of the lysine residue within the active site of Rubisco occurs via elevated stromal pH and Mg 2+ concentration as a result of the activity of the light reactions.

In addition to carboxylation, Rubisco also catalyses a competitive oxygenation reaction, known as photorespiration, that results in the combination of ribulose 1,5-bisphosphate with O 2 rather than CO 2 . In the oxygenation reaction, one rather than two molecules of 3-phosphoglycerate and one molecule of a 2C sugar known as phosphoglycolate are produced by Rubisco. The phosphoglycolate must be converted in a series of reactions that regenerate one molecule of 3-phosphoglycerate and one molecule of CO 2 . These reactions consume additional ATP and thus result in an energy loss to the plant. Although the oxygenation reaction of Rubisco is much less favourable than the carboxylation reaction, the relatively high concentration of O 2 in the leaf (250 μM) compared with CO 2 (10 μM) means that a significant amount of photorespiration is always occurring. Under normal conditions, the ratio of carboxylation to oxygenation is between 3:1 and 4:1. However, this ratio can be decreased with increasing temperature due to decreased CO 2 concentration in the leaf, a decrease in the affinity of Rubisco for CO 2 compared with O 2 and an increase in the maximum rate of the oxygenation reaction compared with the carboxylation reaction. The inefficiencies of the Rubisco enzyme mean that plants must produce it in very large amounts (∼30–50% of total soluble protein in a spinach leaf) to achieve the maximal photosynthetic rate.

CO 2 -concentrating mechanisms

To counter photorespiration, plants, algae and cyanobacteria have evolved different CO 2 -concentrating mechanisms CCMs that aim to increase the concentration of CO 2 relative to O 2 in the vicinity of Rubisco. One such CCM is C 4 photosynthesis that is found in plants such as maize, sugar cane and savanna grasses. C 4 plants show a specialized leaf anatomy: Kranz anatomy ( Figure 18 ). Kranz, German for wreath, refers to a bundle sheath of cells that surrounds the central vein within the leaf, which in turn are surrounded by the mesophyll cells. The mesophyll cells in such leaves are rich in the enzyme phosphoenolpyruvate (PEP) carboxylase, which fixes CO 2 into a 4C carboxylic acid: oxaloaceatate. The oxaloacetate formed by the mesophyll cells is reduced using NADPH to malate, another 4C acid: malate. The malate is then exported from the mesophyll cells to the bundle sheath cells, where it is decarboxylated to pyruvate thus regenerating NADPH and CO 2 . The CO 2 is then utilized by Rubisco in the Calvin cycle. The pyruvate is in turn returned to the mesophyll cells where it is phosphorylated using ATP to reform PEP ( Figure 19 ). The advantage of C 4 photosynthesis is that CO 2 accumulates at a very high concentration in the bundle sheath cells that is then sufficient to allow Rubisco to operate efficiently.

An external file that holds a picture, illustration, etc.
Object name is bse0600255fig18.jpg

Plants growing in hot, bright and dry conditions inevitably have to have their stomata closed for large parts of the day to avoid excessive water loss and wilting. The net result is that the internal CO 2 concentration in the leaf is very low, meaning that C 3 photosynthesis is not possible. To counter this limitation, another CCM is found in succulent plants such as cacti. The Crassulaceae fix CO 2 into malate during the day via PEP carboxylase, store it within the vacuole of the plant cell at night and then release it within their tissues by day to be fixed via normal C 3 photosynthesis. This is termed crassulacean acid metabolism (CAM).

Acknowledgments

I thank Professor Colin Osborne (University of Sheffield, Sheffield, U.K.) for useful discussions on the article, Dr Dan Canniffe (Penn State University, Pennsylvania, PA, U.S.A.) for providing pure pigment spectra and Dr P.J. Weaire (Kingston University, Kingston-upon-Thames, U.K.) for his original Photosynthesis BASC article (1994) on which this essay is partly based.

Abbreviations

ADPadenosine diphosphate
ATPadenosine triphosphate
CH Ocarbohydrate
cyt cytochrome
DHAPdihydroxyacetone phosphate
EETexcitation energy transfer
FNRferredoxin–NADP reductase
GAPglyceraldehyde 3-phosphate
LHClight-harvesting complex
NADPHnicotinomide–adenine dinucleotide phosphate
PEPphosphoenolpyruvate
P inorganic phosphate
PSIPhotosystem I
PSIIPhotosystem II
RCreaction centre
Rubiscoribulose-1,5-bisphosphate carboxylase/oxygenase

This article is a reviewed, revised and updated version of the following ‘Biochemistry Across the School Curriculum’ (BASC) booklet: Weaire, P.J. (1994) Photosynthesis . For further information and to provide feedback on this or any other Biochemical Society education resource, please contact [email protected]. For further information on other Biochemical Society publications, please visit www.biochemistry.org/publications .

Competing Interests

The Author declares that there are no competing interests associated with this article.

Recommended reading and key publications

  • Blankenship R.E. Early evolution of photosynthesis. Plant Physiol. 2010; 154 :434–438. doi: 10.1104/pp.110.161687. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Blankenship R.E. Molecular Mechanisms of Photosynthesis. Chichester: Wiley–Blackwell Publishing; 2014. [ Google Scholar ]
  • Nelson N., Ben Shem A. The complex architecture of oxygenic photosynthesis. Nat. Rev. 2004; 5 :1–12. doi: 10.1038/nrm1525. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Raines C. The Calvin cycle revisited. Photosynth. Res. 2003; 75 :1–10. doi: 10.1023/A:1022421515027. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ruban A.V. Evolution under the sun: optimizing light harvesting in photosynthesis. J. Exp. Bot. 2015; 66 :7–23. doi: 10.1093/jxb/eru400. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sage R.F. The evolution of C 4 photosynthesis. New Phytol. 2004; 161 :341–370. doi: 10.1111/j.1469-8137.2004.00974.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]

IMAGES

  1. Short essay on Photosynthesis || paragraph on photosynthesis ||

    photosynthesis short essay

  2. Photosynthesis and Cellular Respiration

    photosynthesis short essay

  3. Photosynthesis Craftivity (With images)

    photosynthesis short essay

  4. Photosynthesis and Energy

    photosynthesis short essay

  5. 10 lines on photosynthesis, essay on photosynthesis in english, Ashwin's World

    photosynthesis short essay

  6. 10 Lines Essay On Photosynthesis

    photosynthesis short essay

VIDEO

  1. PhotoSynthesis AI Video

  2. Biology

  3. How Does Photosynthesis Work?

  4. Biology

  5. How Does Photosynthesis Work

  6. Photosynthesis paragraph/10 lines on Photosynthesis

COMMENTS

  1. Photosynthesis

    In chemical terms, photosynthesis is a light-energized oxidation-reduction process. (Oxidation refers to the removal of electrons from a molecule; reduction refers to the gain of electrons by a molecule.) In plant photosynthesis, the energy of light is used to drive the oxidation of water (H 2 O), producing oxygen gas (O 2), hydrogen ions (H ...

  2. Photosynthesis

    The process. During photosynthesis, plants take in carbon dioxide (CO 2) and water (H 2 O) from the air and soil. Within the plant cell, the water is oxidized, meaning it loses electrons, while the carbon dioxide is reduced, meaning it gains electrons. This transforms the water into oxygen and the carbon dioxide into glucose.

  3. Essay on Photosynthesis

    500 Words Essay on Photosynthesis What is Photosynthesis? Photosynthesis is a process used by plants, algae, and some bacteria to turn sunlight, water, and carbon dioxide into food and oxygen. This happens in the green parts of plants, mainly the leaves. The green color comes from chlorophyll, a special substance in the leaves that captures ...

  4. Photosynthesis: Essay on Photosynthesis (2098 Words)

    It is the main event in light reactions of photosynthesis. The function of light reactions is two fold —. (1) The photochemical splitting of water provides hydrogen atoms for the reduction of CO 2, and. (2) Producing of ATP which provides energy for the subsequent synthesis of carbohydrates.

  5. Photosynthesis

    The word "photosynthesis" is derived from the Greek words phōs (pronounced: "fos") and σύνθεσις (pronounced: "synthesis")Phōs means "light" and σύνθεσις means, "combining together."This means "combining together with the help of light." Photosynthesis also applies to other organisms besides green plants. These include several prokaryotes such as ...

  6. Photosynthesis

    Photosynthesis sustains virtually all life on planet Earth providing the oxygen we breathe and the food we eat; it forms the basis of global food chains and meets the majority of humankind's current energy needs through fossilized photosynthetic fuels. The process of photosynthesis in plants is based on two reactions that are carried out by separate parts of the chloroplast. The light ...

  7. Photosynthesis

    Photosynthesis Equation. 6 CO 2 + 6 H 2 O + Light -> C 6 H 12 O 6 + 6 O 2 + 6 H 2 O. Above is the overall reaction for photosynthesis. Using the energy from light and the hydrogens and electrons from water, the plant combines the carbons found in carbon dioxide into more complex molecules. While a 3-carbon molecule is the direct result of ...

  8. Explainer: How photosynthesis works

    They do it all through photosynthesis. Photosynthesis is the process of creating sugar and oxygen from carbon dioxide, water and sunlight. It happens through a long series of chemical reactions. But it can be summarized like this: Carbon dioxide, water and light go in. Glucose, water and oxygen come out. (Glucose is a simple sugar.)

  9. Overview of Photosynthesis

    Main Structures and Summary of Photosynthesis. Photosynthesis is a multi-step process that requires specific wavelengths of visible sunlight, carbon dioxide (which is low in energy), and water as substrates ().After the process is complete, it releases oxygen and produces glyceraldehyde-3-phosphate (GA3P), as well as simple carbohydrate molecules (high in energy) that can then be converted ...

  10. Photosynthesis

    Photosynthesis. Photosynthesis is the processes of using sunlight to convert chemical compounds (specifically carbon dioxide and water) into food. Photosynthesizing organisms (plants, algae, and bacteria) provide most of the chemical energy that flows through the biosphere. They also produced most of the biomass that led to the fossil fuels ...

  11. Photosynthesis

    Photosynthesis (/ ˌfoʊtəˈsɪnθəsɪs / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.

  12. PDF Photosynthesis

    Photosynthesis is the process by which plants, some bacteria and some protistans use the energy from sunlight to produce glucose from carbon dioxide and water. This glucose can be converted into pyruvate which releases adenosine triphosphate (ATP) by cellular respiration. Oxygen is also formed. Photosynthesis may be summarised by the word equation:

  13. The Process of Photosynthesis

    Light + CO2 + 2H2O → n (CH2O) + H2O + O2. The experiment entailed the use of both boiled and fresh chloroplast suspension. The boiled chloroplast was used as a control and photosynthetic activities were monitored in the fresh chloroplast. The results were measured using a spectrophotometer and tabulated.

  14. Photosynthesis and Cellular Respiration Essay

    According to the following equation of the photosynthesis, C → O2 + 2H20 + photons (CH2O)n + electrons + O2 carbon monoxide and water are transferred into carbohydrates under the light with the release of atmospheric oxygen. The purpose of cellular respiration is to convert nutrients into energy. The reactants of the respiration are glucose ...

  15. Photosynthesis and Cellular Respiration: [Essay Example], 573 words

    The photosynthesis equation is CO2 (carbon dioxide)+H2O (water)+light energy=C6H12O6 (glucose) & O2 (oxygen). Cellular respiration is a process plants use at night for energy. This happens in the mitochondria's of plant cells. The resources needed for this are energy, carbon dioxide, water, and heat. Cellular respiration is the inverse of ...

  16. photosynthesis

    Plants take in water from the soil and carbon dioxide from the air. Photosynthesis starts when chlorophyll absorbs energy from sunlight. Green plants use this light energy to change water and carbon dioxide into oxygen and nutrients called sugars. The plants use some of the sugars and store the rest. The oxygen is released into the air.

  17. Photosynthesis: basics, history and modelling

    Note that the above global equation of photosynthesis emphasizes that the oxygen molecules released into the atmosphere originate from water oxidation, not from carbon dioxide, as established using 18 O-labelled water (Ruben et al., 1941).. This process starts in the thylakoid membrane (TM) with two light reactions taking place simultaneously at photosystem (PS) II and PSI reaction centres ...

  18. What Is Photosynthesis?

    What Is Photosynthesis? "Photosynthesis is the process used by green plants and a few organisms that use sunlight, carbon dioxide and water to prepare their food.". The process of photosynthesis is used by plants, algae and certain bacteria that convert light energy into chemical energy. The glucose formed during the process of ...

  19. Photosynthesis Process: [Essay Example], 423 words GradesFixer

    During photosynthesis, a chemical change occurs in chloroplasts, and plants turn carbon dioxide (CO2) and water (H2O) into glucose and oxygen (O2). Cellular respiration occurs in EVERY LIVING CELL. Without it, plants would not have access to the energy in the sugar (glucose). Without energy, life cannot be maintained.

  20. What is Photosynthesis?

    Essay Example: Photosynthesis is the process that transforms organisms from light energy into chemical energy. In order for photosynthesis to take place, it needs these three things: Water, carbon dioxide, and sunlight. As humans, in order to live plants, must take in gases. ... short deadlines. 100% Plagiarism-Free.

  21. Photosynthesis

    Photosynthesis is the ultimate source of all of humankind's food and oxygen, whereas fossilized photosynthetic fuels provide ∼87% of the world's energy. It is the biochemical process that sustains the biosphere as the basis for the food chain. The oxygen produced as a by-product of photosynthesis allowed the formation of the ozone layer, the ...

  22. Short essay on Photosynthesis || paragraph on photosynthesis

    In this video you will see how to write a 'Photosynthesis'||. This video will help you if you want to write an short essay in english.Hope you will like this...