An official website of the United States government
Official websites use .gov A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.
- Publications
- Account settings
- Advanced Search
- Journal List
What is Scientific Research and How Can it be Done?
Ceyda özhan çaparlar, aslı dönmez.
- Author information
- Article notes
- Copyright and License information
Address for Correspondence: Dr. Ceyda Özhan Çaparlar E-posta: [email protected]
Received 2016 Apr 1; Accepted 2016 May 17; Issue date 2016 Aug.
Scientific researches are studies that should be systematically planned before performing them. In this review, classification and description of scientific studies, planning stage randomisation and bias are explained.
Keywords: Scientific researches, clinic researches, randomisation
Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new information is revealed with respect to diagnosis, treatment and reliability of applications. The purpose of this review is to provide information about the definition, classification and methodology of scientific research.
Before beginning the scientific research, the researcher should determine the subject, do planning and specify the methodology. In the Declaration of Helsinki, it is stated that ‘the primary purpose of medical researches on volunteers is to understand the reasons, development and effects of diseases and develop protective, diagnostic and therapeutic interventions (method, operation and therapies). Even the best proven interventions should be evaluated continuously by investigations with regard to reliability, effectiveness, efficiency, accessibility and quality’ ( 1 ).
The questions, methods of response to questions and difficulties in scientific research may vary, but the design and structure are generally the same ( 2 ).
Classification of Scientific Research
Scientific research can be classified in several ways. Classification can be made according to the data collection techniques based on causality, relationship with time and the medium through which they are applied.
According to data collection techniques:
Observational
Experimental
According to causality relationships:
Descriptive
According to relationships with time:
Retrospective
Prospective
Cross-sectional
According to the medium through which they are applied:
Social descriptive research ( 3 )
Another method is to classify the research according to its descriptive or analytical features. This review is written according to this classification method.
I. Descriptive research
Case series
Surveillance studies
II. Analytical research
Observational studies: cohort, case control and cross- sectional research
Interventional research: quasi-experimental and clinical research
Descriptive Research: in this type of research, the participant examines the distribution of diseases according to their place and time in society. It includes case reports, case series and surveillance studies.
Case Report: it is the most common type of descriptive study. It is the examination of a single case having a different quality in the society, e.g. conducting general anaesthesia in a pregnant patient with mucopolysaccharidosis.
Case Series: it is the description of repetitive cases having common features. For instance; case series involving interscapular pain related to neuraxial labour analgesia. Interestingly, malignant hyperthermia cases are not accepted as case series since they are rarely seen during historical development.
Surveillance Studies: these are the results obtained from the databases that follow and record a health problem for a certain time, e.g. the surveillance of cross-infections during anaesthesia in the intensive care unit.
Analytical Scientific Research: the most important difference of this and the descriptive research is the presence of a comparison group. They are categorised as observational and interventional research.
Observational Research: the participants are grouped and evaluated according to a research plan or protocol. Observational research is more attractive than other studies: as necessary clinical data is available, coming to a conclusion is fast and they incur low costs ( 4 ). In observational studies, the factors and events examined by the researcher are not under the researcher’s control. They cannot be changed when requested. All the variables, except for the examined factor or event, cannot be kept constant. Randomisation can be restrictedly used in some cases. It might not be always possible to apparently and completely detect a cause and effect relationship. The results are considerably similar to real-life situations since the events are examined as they are and special conditions are not created. Since the repetition of the observed cases is impossible most of the times, it may not be possible to recreate the same conditions ( 5 ).
Moreover, some studies may be experimental. After the researcher intervenes, the researcher waits for the result, observes and obtains data. Experimental studies are, more often, in the form of clinical trials or laboratory animal trials ( 2 ).
Analytical observational research can be classified as cohort, case-control and cross-sectional studies.
Cohort Studies (Prospective, Retrospective and Ambidirectional): A cohort is a group formed by patients having common characteristics. A cohort study is the one in which a group of patients is followed-up in time, e.g. comparison of academic performances of children (who underwent anaesthesia in their neonatal period) in their adolescence.
Firstly, the participants are controlled with regard to the disease under investigation. Patients are excluded from the study. Healthy participants are evaluated with regard to the exposure to the effect. Then, the group (cohort) is followed-up for a sufficient period of time with respect to the occurrence of disease, and the progress of disease is studied. The risk of the healthy participants getting sick is considered an incident. In cohort studies, the risk of disease between the groups exposed and not exposed to the effect is calculated and rated. This rate is called relative risk. Relative risk indicates the strength of exposure to the effect on the disease.
Cohort research may be observational and experimental. The follow-up of patients prospectively is called a prospective cohort study . The results are obtained after the research starts. The researcher’s following-up of cohort subjects from a certain point towards the past is called a retrospective cohort study . Prospective cohort studies are more valuable than retrospective cohort studies: this is because in the former, the researcher observes and records the data. The researcher plans the study before the research and determines what data will be used. On the other hand, in retrospective studies, the research is made on recorded data: no new data can be added.
In fact, retrospective and prospective studies are not observational. They determine the relationship between the date on which the researcher has begun the study and the disease development period. The most critical disadvantage of this type of research is that if the follow-up period is long, participants may leave the study at their own behest or due to physical conditions. Cohort studies that begin after exposure and before disease development are called ambidirectional studies . Public healthcare studies generally fall within this group, e.g. lung cancer development in smokers.
Case-Control Studies: these studies are retrospective cohort studies. They examine the cause and effect relationship from the effect to the cause. The detection or determination of data depends on the information recorded in the past. The researcher has no control over the data ( 2 ).
Cross-Sectional Studies: in cross- sectional studies, the patients or events are examined at a particular point in time. Prevalence studies (the percentage of a population having a disease at a certain time) are the ones in which the diagnosis and disease mechanism are detected and the cause and effect relationship is examined at the same level.
Cross-sectional studies are advantageous since they can be concluded relatively quickly. It may be difficult to obtain a reliable result from such studies for rare diseases ( 2 ).
Cross-sectional studies are characterised by timing. In such studies, the exposure and result are simultaneously evaluated. While cross-sectional studies are restrictedly used in studies involving anaesthesia (since the process of exposure is limited), they can be used in studies conducted in intensive care units.
Interventional Research (Experimental Studies): in this type of research, there is a control group aimed to be tested. The researcher decides upon which effect the participant will be exposed to in this study. Post-intervention, the researcher waits for the result, observes and obtains the data. Interventional studies are divided into two: quasi-experimental and clinical research.
Quasi-Experimental Research: they are conducted in cases in which a quick result is requested and the participants or research areas cannot be randomised, e.g. giving hand-wash training and comparing the frequency of nosocomial infections before and after hand wash.
Clinical Research: they are prospective studies carried out with a control group for the purpose of comparing the effect and value of an intervention in a clinical case. Clinical study and research have the same meaning. Drugs, invasive interventions, medical devices and operations, diets, physical therapy and diagnostic tools are relevant in this context ( 6 ).
Clinical studies are conducted by a responsible researcher, generally a physician. In the research team, there may be other healthcare staff besides physicians. Clinical studies may be financed by healthcare institutes, drug companies, academic medical centres, volunteer groups, physicians, healthcare service providers and other individuals. They may be conducted in several places including hospitals, universities, physicians’ offices and community clinics based on the researcher’s requirements. The participants are made aware of the duration of the study before their inclusion. Clinical studies should include the evaluation of recommendations (drug, device and surgical) for the treatment of a disease, syndrome or a comparison of one or more applications; finding different ways for recognition of a disease or case and prevention of their recurrence ( 7 ).
Clinical Research
In this review, clinical research is explained in more detail since it is the most valuable study in scientific research.
Clinical research starts with forming a hypothesis. A hypothesis can be defined as a claim put forward about the value of a population parameter based on sampling. There are two types of hypotheses in statistics.
H 0 hypothesis is called a control or null hypothesis. It is the hypothesis put forward in research, which implies that there is no difference between the groups under consideration. If this hypothesis is rejected at the end of the study, it indicates that a difference exists between the two treatments under consideration.
H 1 hypothesis is called an alternative hypothesis. It is hypothesised against a null hypothesis, which implies that a difference exists between the groups under consideration. For example, consider the following hypothesis: drug A has an analgesic effect. Control or null hypothesis (H 0 ): there is no difference between drug A and placebo with regard to the analgesic effect. The alternative hypothesis (H 1 ) is applicable if a difference exists between drug A and placebo with regard to the analgesic effect.
The planning phase comes after the determination of a hypothesis. A clinical research plan is called a protocol . In a protocol, the reasons for research, number and qualities of participants, tests to be applied, study duration and what information to be gathered from the participants should be found and conformity criteria should be developed.
The selection of participant groups to be included in the study is important. Inclusion and exclusion criteria of the study for the participants should be determined. Inclusion criteria should be defined in the form of demographic characteristics (age, gender, etc.) of the participant group and the exclusion criteria as the diseases that may influence the study, age ranges, cases involving pregnancy and lactation, continuously used drugs and participants’ cooperation.
The next stage is methodology. Methodology can be grouped under subheadings, namely, the calculation of number of subjects, blinding (masking), randomisation, selection of operation to be applied, use of placebo and criteria for stopping and changing the treatment.
I. Calculation of the Number of Subjects
The entire source from which the data are obtained is called a universe or population . A small group selected from a certain universe based on certain rules and which is accepted to highly represent the universe from which it is selected is called a sample and the characteristics of the population from which the data are collected are called variables. If data is collected from the entire population, such an instance is called a parameter . Conducting a study on the sample rather than the entire population is easier and less costly. Many factors influence the determination of the sample size. Firstly, the type of variable should be determined. Variables are classified as categorical (qualitative, non-numerical) or numerical (quantitative). Individuals in categorical variables are classified according to their characteristics. Categorical variables are indicated as nominal and ordinal (ordered). In nominal variables, the application of a category depends on the researcher’s preference. For instance, a female participant can be considered first and then the male participant, or vice versa. An ordinal (ordered) variable is ordered from small to large or vice versa (e.g. ordering obese patients based on their weights-from the lightest to the heaviest or vice versa). A categorical variable may have more than one characteristic: such variables are called binary or dichotomous (e.g. a participant may be both female and obese).
If the variable has numerical (quantitative) characteristics and these characteristics cannot be categorised, then it is called a numerical variable. Numerical variables are either discrete or continuous. For example, the number of operations with spinal anaesthesia represents a discrete variable. The haemoglobin value or height represents a continuous variable.
Statistical analyses that need to be employed depend on the type of variable. The determination of variables is necessary for selecting the statistical method as well as software in SPSS. While categorical variables are presented as numbers and percentages, numerical variables are represented using measures such as mean and standard deviation. It may be necessary to use mean in categorising some cases such as the following: even though the variable is categorical (qualitative, non-numerical) when Visual Analogue Scale (VAS) is used (since a numerical value is obtained), it is classified as a numerical variable: such variables are averaged.
Clinical research is carried out on the sample and generalised to the population. Accordingly, the number of samples should be correctly determined. Different sample size formulas are used on the basis of the statistical method to be used. When the sample size increases, error probability decreases. The sample size is calculated based on the primary hypothesis. The determination of a sample size before beginning the research specifies the power of the study. Power analysis enables the acquisition of realistic results in the research, and it is used for comparing two or more clinical research methods.
Because of the difference in the formulas used in calculating power analysis and number of samples for clinical research, it facilitates the use of computer programs for making calculations.
It is necessary to know certain parameters in order to calculate the number of samples by power analysis.
Type-I (α) and type-II (β) error levels
Difference between groups (d-difference) and effect size (ES)
Distribution ratio of groups
Direction of research hypothesis (H1)
a. Type-I (α) and Type-II (β) Error (β) Levels
Two types of errors can be made while accepting or rejecting H 0 hypothesis in a hypothesis test. Type-I error (α) level is the probability of finding a difference at the end of the research when there is no difference between the two applications. In other words, it is the rejection of the hypothesis when H 0 is actually correct and it is known as α error or p value. For instance, when the size is determined, type-I error level is accepted as 0.05 or 0.01.
Another error that can be made during a hypothesis test is a type-II error. It is the acceptance of a wrongly hypothesised H 0 hypothesis. In fact, it is the probability of failing to find a difference when there is a difference between the two applications. The power of a test is the ability of that test to find a difference that actually exists. Therefore, it is related to the type-II error level.
Since the type-II error risk is expressed as β, the power of the test is defined as 1–β. When a type-II error is 0.20, the power of the test is 0.80. Type-I (α) and type-II (β) errors can be intentional. The reason to intentionally make such an error is the necessity to look at the events from the opposite perspective.
b. Difference between Groups and ES
ES is defined as the state in which statistical difference also has clinically significance: ES≥0.5 is desirable. The difference between groups is the absolute difference between the groups compared in clinical research.
c. Allocation Ratio of Groups
The allocation ratio of groups is effective in determining the number of samples. If the number of samples is desired to be determined at the lowest level, the rate should be kept as 1/1.
d. Direction of Hypothesis (H1)
The direction of hypothesis in clinical research may be one-sided or two-sided. While one-sided hypotheses hypothesis test differences in the direction of size, two-sided hypotheses hypothesis test differences without direction. The power of the test in two-sided hypotheses is lower than one-sided hypotheses.
After these four variables are determined, they are entered in the appropriate computer program and the number of samples is calculated. Statistical packaged software programs such as Statistica, NCSS and G-Power may be used for power analysis and calculating the number of samples. When the samples size is calculated, if there is a decrease in α, difference between groups, ES and number of samples, then the standard deviation increases and power decreases. The power in two-sided hypothesis is lower. It is ethically appropriate to consider the determination of sample size, particularly in animal experiments, at the beginning of the study. The phase of the study is also important in the determination of number of subjects to be included in drug studies. Usually, phase-I studies are used to determine the safety profile of a drug or product, and they are generally conducted on a few healthy volunteers. If no unacceptable toxicity is detected during phase-I studies, phase-II studies may be carried out. Phase-II studies are proof-of-concept studies conducted on a larger number (100–500) of volunteer patients. When the effectiveness of the drug or product is evident in phase-II studies, phase-III studies can be initiated. These are randomised, double-blinded, placebo or standard treatment-controlled studies. Volunteer patients are periodically followed-up with respect to the effectiveness and side effects of the drug. It can generally last 1–4 years and is valuable during licensing and releasing the drug to the general market. Then, phase-IV studies begin in which long-term safety is investigated (indication, dose, mode of application, safety, effectiveness, etc.) on thousands of volunteer patients.
II. Blinding (Masking) and Randomisation Methods
When the methodology of clinical research is prepared, precautions should be taken to prevent taking sides. For this reason, techniques such as randomisation and blinding (masking) are used. Comparative studies are the most ideal ones in clinical research.
Blinding Method
A case in which the treatments applied to participants of clinical research should be kept unknown is called the blinding method . If the participant does not know what it receives, it is called a single-blind study; if even the researcher does not know, it is called a double-blind study. When there is a probability of knowing which drug is given in the order of application, when uninformed staff administers the drug, it is called in-house blinding. In case the study drug is known in its pharmaceutical form, a double-dummy blinding test is conducted. Intravenous drug is given to one group and a placebo tablet is given to the comparison group; then, the placebo tablet is given to the group that received the intravenous drug and intravenous drug in addition to placebo tablet is given to the comparison group. In this manner, each group receives both the intravenous and tablet forms of the drug. In case a third party interested in the study is involved and it also does not know about the drug (along with the statistician), it is called third-party blinding.
Randomisation Method
The selection of patients for the study groups should be random. Randomisation methods are used for such selection, which prevent conscious or unconscious manipulations in the selection of patients ( 8 ).
No factor pertaining to the patient should provide preference of one treatment to the other during randomisation. This characteristic is the most important difference separating randomised clinical studies from prospective and synchronous studies with experimental groups. Randomisation strengthens the study design and enables the determination of reliable scientific knowledge ( 2 ).
The easiest method is simple randomisation, e.g. determination of the type of anaesthesia to be administered to a patient by tossing a coin. In this method, when the number of samples is kept high, a balanced distribution is created. When the number of samples is low, there will be an imbalance between the groups. In this case, stratification and blocking have to be added to randomisation. Stratification is the classification of patients one or more times according to prognostic features determined by the researcher and blocking is the selection of a certain number of patients for each stratification process. The number of stratification processes should be determined at the beginning of the study.
As the number of stratification processes increases, performing the study and balancing the groups become difficult. For this reason, stratification characteristics and limitations should be effectively determined at the beginning of the study. It is not mandatory for the stratifications to have equal intervals. Despite all the precautions, an imbalance might occur between the groups before beginning the research. In such circumstances, post-stratification or restandardisation may be conducted according to the prognostic factors.
The main characteristic of applying blinding (masking) and randomisation is the prevention of bias. Therefore, it is worthwhile to comprehensively examine bias at this stage.
Bias and Chicanery
While conducting clinical research, errors can be introduced voluntarily or involuntarily at a number of stages, such as design, population selection, calculating the number of samples, non-compliance with study protocol, data entry and selection of statistical method. Bias is taking sides of individuals in line with their own decisions, views and ideological preferences ( 9 ). In order for an error to lead to bias, it has to be a systematic error. Systematic errors in controlled studies generally cause the results of one group to move in a different direction as compared to the other. It has to be understood that scientific research is generally prone to errors. However, random errors (or, in other words, ‘the luck factor’-in which bias is unintended-do not lead to bias ( 10 ).
Another issue, which is different from bias, is chicanery. It is defined as voluntarily changing the interventions, results and data of patients in an unethical manner or copying data from other studies. Comparatively, bias may not be done consciously.
In case unexpected results or outliers are found while the study is analysed, if possible, such data should be re-included into the study since the complete exclusion of data from a study endangers its reliability. In such a case, evaluation needs to be made with and without outliers. It is insignificant if no difference is found. However, if there is a difference, the results with outliers are re-evaluated. If there is no error, then the outlier is included in the study (as the outlier may be a result). It should be noted that re-evaluation of data in anaesthesiology is not possible.
Statistical evaluation methods should be determined at the design stage so as not to encounter unexpected results in clinical research. The data should be evaluated before the end of the study and without entering into details in research that are time-consuming and involve several samples. This is called an interim analysis . The date of interim analysis should be determined at the beginning of the study. The purpose of making interim analysis is to prevent unnecessary cost and effort since it may be necessary to conclude the research after the interim analysis, e.g. studies in which there is no possibility to validate the hypothesis at the end or the occurrence of different side effects of the drug to be used. The accuracy of the hypothesis and number of samples are compared. Statistical significance levels in interim analysis are very important. If the data level is significant, the hypothesis is validated even if the result turns out to be insignificant after the date of the analysis.
Another important point to be considered is the necessity to conclude the participants’ treatment within the period specified in the study protocol. When the result of the study is achieved earlier and unexpected situations develop, the treatment is concluded earlier. Moreover, the participant may quit the study at its own behest, may die or unpredictable situations (e.g. pregnancy) may develop. The participant can also quit the study whenever it wants, even if the study has not ended ( 7 ).
In case the results of a study are contrary to already known or expected results, the expected quality level of the study suggesting the contradiction may be higher than the studies supporting what is known in that subject. This type of bias is called confirmation bias. The presence of well-known mechanisms and logical inference from them may create problems in the evaluation of data. This is called plausibility bias.
Another type of bias is expectation bias. If a result different from the known results has been achieved and it is against the editor’s will, it can be challenged. Bias may be introduced during the publication of studies, such as publishing only positive results, selection of study results in a way to support a view or prevention of their publication. Some editors may only publish research that extols only the positive results or results that they desire.
Bias may be introduced for advertisement or economic reasons. Economic pressure may be applied on the editor, particularly in the cases of studies involving drugs and new medical devices. This is called commercial bias.
In recent years, before beginning a study, it has been recommended to record it on the Web site www.clinicaltrials.gov for the purpose of facilitating systematic interpretation and analysis in scientific research, informing other researchers, preventing bias, provision of writing in a standard format, enhancing contribution of research results to the general literature and enabling early intervention of an institution for support. This Web site is a service of the US National Institutes of Health.
The last stage in the methodology of clinical studies is the selection of intervention to be conducted. Placebo use assumes an important place in interventions. In Latin, placebo means ‘I will be fine’. In medical literature, it refers to substances that are not curative, do not have active ingredients and have various pharmaceutical forms. Although placebos do not have active drug characteristic, they have shown effective analgesic characteristics, particularly in algology applications; further, its use prevents bias in comparative studies. If a placebo has a positive impact on a participant, it is called the placebo effect ; on the contrary, if it has a negative impact, it is called the nocebo effect . Another type of therapy that can be used in clinical research is sham application. Although a researcher does not cure the patient, the researcher may compare those who receive therapy and undergo sham. It has been seen that sham therapies also exhibit a placebo effect. In particular, sham therapies are used in acupuncture applications ( 11 ). While placebo is a substance, sham is a type of clinical application.
Ethically, the patient has to receive appropriate therapy. For this reason, if its use prevents effective treatment, it causes great problem with regard to patient health and legalities.
Before medical research is conducted with human subjects, predictable risks, drawbacks and benefits must be evaluated for individuals or groups participating in the study. Precautions must be taken for reducing the risk to a minimum level. The risks during the study should be followed, evaluated and recorded by the researcher ( 1 ).
After the methodology for a clinical study is determined, dealing with the ‘Ethics Committee’ forms the next stage. The purpose of the ethics committee is to protect the rights, safety and well-being of volunteers taking part in the clinical research, considering the scientific method and concerns of society. The ethics committee examines the studies presented in time, comprehensively and independently, with regard to ethics and science; in line with the Declaration of Helsinki and following national and international standards concerning ‘Good Clinical Practice’. The method to be followed in the formation of the ethics committee should be developed without any kind of prejudice and to examine the applications with regard to ethics and science within the framework of the ethics committee, Regulation on Clinical Trials and Good Clinical Practice ( www.iku.com ). The necessary documents to be presented to the ethics committee are research protocol, volunteer consent form, budget contract, Declaration of Helsinki, curriculum vitae of researchers, similar or explanatory literature samples, supporting institution approval certificate and patient follow-up form.
Only one sister/brother, mother, father, son/daughter and wife/husband can take charge in the same ethics committee. A rector, vice rector, dean, deputy dean, provincial healthcare director and chief physician cannot be members of the ethics committee.
Members of the ethics committee can work as researchers or coordinators in clinical research. However, during research meetings in which members of the ethics committee are researchers or coordinators, they must leave the session and they cannot sign-off on decisions. If the number of members in the ethics committee for a particular research is so high that it is impossible to take a decision, the clinical research is presented to another ethics committee in the same province. If there is no ethics committee in the same province, an ethics committee in the closest settlement is found.
Thereafter, researchers need to inform the participants using an informed consent form. This form should explain the content of clinical study, potential benefits of the study, alternatives and risks (if any). It should be easy, comprehensible, conforming to spelling rules and written in plain language understandable by the participant.
This form assists the participants in taking a decision regarding participation in the study. It should aim to protect the participants. The participant should be included in the study only after it signs the informed consent form; the participant can quit the study whenever required, even when the study has not ended ( 7 ).
Peer-review: Externally peer-reviewed.
Author Contributions: Concept - C.Ö.Ç., A.D.; Design - C.Ö.Ç.; Supervision - A.D.; Resource - C.Ö.Ç., A.D.; Materials - C.Ö.Ç., A.D.; Analysis and/or Interpretation - C.Ö.Ç., A.D.; Literature Search - C.Ö.Ç.; Writing Manuscript - C.Ö.Ç.; Critical Review - A.D.; Other - C.Ö.Ç., A.D.
Conflict of Interest: No conflict of interest was declared by the authors.
Financial Disclosure: The authors declared that this study has received no financial support.
- 1. Klinik araştırmalar Derneği. Helsinki Bildirgesi. 2016. The web site: http://www.klinikarastirmalar.org.tr/icerik.phpid=1304 .
- 2. Bekiroğlu N. Biyoistatistik. The web site: http://docplayer.biz.tr/2029485-Biyoistatistik-nural-bekiroglu-ph-d-giris.html .
- 3. Öcek Z. Epidemiyoloji. The web site: http://dent.ege.edu.tr/dosyalar/kaynak/116 .
- 4. Sessler D, Imrey PB. Clinical Research Methodology 3: Randomized Controlled Trials. Anesth Analg. 2015;121:1052–64. doi: 10.1213/ANE.0000000000000862. http://dx.doi.org/10.1213/ANE.0000000000000862 . [ DOI ] [ PubMed ] [ Google Scholar ]
- 5. Özkan S. İlaçlarla yapılan gözlemsel çalışmalar. In: Akan H, İlbars H, Ömeroğlu Çetinkaya N, editors. Klinik Araştırmalar Kitabı-2014 1 Baskı. Ankara: Bilimsel Tıp Yayınevi; 2014. pp. 205–9. [ Google Scholar ]
- 6. Akan H. Bilimsel Araştırmalarda Planlama ve Tasarım. Ankem Dergisi. 2014;28:101–4. [ Google Scholar ]
- 7. Clinicaltrial. Submit studies. The web site: https://clinicaltrials.gov .
- 8. Özdemir O. Randomizasyon. In: Özdemir O, editor. Medikal İstatistik. 1. Baskı. İstanbul: İstanbul Medikal Yayıncılık; 2006. p. 20. [ Google Scholar ]
- 9. Lotte Gluud L. Bias in Clinical Invervention. Am J Epidemiol. 2006;163:493–501. doi: 10.1093/aje/kwj069. http://dx.doi.org/10.1093/aje/kwj069 . [ DOI ] [ PubMed ] [ Google Scholar ]
- 10. Akan H. Bilimsel Yayınlarda Taraf Tutma Sağlık Bilimlerinde Süreli Yayıncılık. 2008:89–95. [ Google Scholar ]
- 11. Healthwise Staff. Plasebo and sham treatment myhealth. The web site: https://myhealth.alberta.ca/Health/pages/conditions.aspx .
- View on publisher site
- PDF (114.6 KB)
- Collections
Similar articles
Cited by other articles, links to ncbi databases.
- Download .nbib .nbib
- Format: AMA APA MLA NLM
Add to Collections
- Privacy Policy
Home » Scientific Research – Types, Purpose and Guide
Scientific Research – Types, Purpose and Guide
Table of Contents
Scientific research is a systematic investigation aimed at acquiring new knowledge, validating existing knowledge, or addressing specific questions through rigorous methodologies. It serves as the backbone of progress across disciplines, enabling advancements in medicine, technology, social sciences, and other fields. This article explores the definition, types, purpose, and essential steps involved in conducting scientific research.
Scientific Research
Scientific research is defined as a structured process of inquiry designed to collect, analyze, and interpret data to answer a specific question or solve a problem. It adheres to established scientific principles and methodologies to ensure reliability, accuracy, and validity of findings. The core characteristic of scientific research is its objective approach, where personal biases are minimized, and evidence-based conclusions are drawn.
Types of Scientific Research
Scientific research can be categorized based on its purpose, methodology, and the nature of the study. Below are the primary types:
1. Based on Purpose
- Basic Research : Focuses on understanding fundamental principles without immediate application. For example, studying the structure of DNA.
- Applied Research : Aims to solve specific, practical problems. For instance, developing a new drug for a disease.
- Translational Research : Bridges the gap between basic and applied research by translating findings into practical applications.
2. Based on Methodology
- Quantitative Research : Uses numerical data to measure and analyze phenomena. It relies on statistical tools and aims for generalizable results.
- Qualitative Research : Focuses on understanding human behavior and experiences through non-numerical data such as interviews or observations.
- Mixed-Methods Research : Combines quantitative and qualitative approaches to provide a more comprehensive understanding.
3. Based on Nature of Study
- Descriptive Research : Observes and describes characteristics of a subject without influencing it.
- Exploratory Research : Investigates unknown phenomena to develop hypotheses.
- Explanatory Research : Seeks to explain causes or relationships among variables.
- Experimental Research : Involves manipulating variables in a controlled environment to test hypotheses.
Purpose of Scientific Research
The purpose of scientific research extends beyond mere knowledge acquisition. It encompasses several objectives:
1. Advancing Knowledge
Scientific research uncovers new information, refines existing theories, and broadens our understanding of various phenomena.
2. Problem Solving
Applied research addresses practical challenges, providing evidence-based solutions in fields such as healthcare, engineering, and environmental science.
3. Informing Policy
Research findings guide policymakers in making informed decisions, ensuring that regulations and programs are grounded in evidence.
4. Driving Innovation
Scientific inquiry fosters technological advancements and creative solutions, driving societal and economic progress.
Guide to Conducting Scientific Research
Conducting scientific research requires a structured approach. Below are the key steps involved:
1. Identify a Research Problem
Select a specific issue or question that aligns with your interests and the needs of your field.
2. Conduct a Literature Review
Review existing studies to understand the current state of knowledge and identify gaps.
3. Formulate a Hypothesis
Develop a testable statement or research question that guides your investigation.
4. Choose a Methodology
Select the appropriate research design, tools, and techniques based on your objectives.
5. Collect Data
Gather information systematically using experiments, surveys, interviews, or other methods.
6. Analyze Data
Use statistical or qualitative analysis to interpret your findings.
7. Draw Conclusions
Compare results with your hypothesis and discuss their implications.
8. Disseminate Findings
Share your research through publications, presentations, or reports to contribute to the broader scientific community.
Ethical Considerations in Scientific Research
Ethics play a crucial role in ensuring the integrity of scientific research. Key considerations include:
- Informed Consent : Participants must voluntarily agree to take part after understanding the study’s purpose and risks.
- Confidentiality : Researchers must protect the privacy of participants.
- Avoiding Bias : Efforts should be made to maintain objectivity and transparency.
- Plagiarism : Proper attribution of sources is essential to uphold academic honesty.
Scientific research is a fundamental tool for expanding human knowledge, solving real-world problems, and driving innovation. By understanding its types, purposes, and methodologies, researchers can approach their investigations with clarity and rigor. The adherence to ethical practices and systematic processes ensures that the outcomes are credible, impactful, and contribute meaningfully to the global body of knowledge.
- Babbie, E. (2020). The Practice of Social Research . Cengage Learning.
- Creswell, J. W. (2021). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . Sage Publications.
- Kumar, R. (2019). Research Methodology: A Step-by-Step Guide for Beginners . SAGE Publications.
- National Science Foundation (2023). “What is Basic Research?” Retrieved from https://www.nsf.gov/
- World Health Organization (2023). “Translational Research in Health.” Retrieved from https://www.who.int/
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
Historical Research – Types, Methods and Examples
Original Research – Definition, Examples, Guide
Humanities Research – Types, Methods and Examples
Artistic Research – Methods, Types and Examples
Documentary Research – Types, Methods and...
- Table of Contents
- New in this Archive
- Chronological
- Editorial Information
- About the SEP
- Editorial Board
- How to Cite the SEP
- Special Characters
- Support the SEP
- PDFs for SEP Friends
- Make a Donation
- SEPIA for Libraries
- Entry Contents
Bibliography
Academic tools.
- Friends PDF Preview
- Author and Citation Info
- Back to Top
Scientific Method
Science is an enormously successful human enterprise. The study of scientific method is the attempt to discern the activities by which that success is achieved. Among the activities often identified as characteristic of science are systematic observation and experimentation, inductive and deductive reasoning, and the formation and testing of hypotheses and theories. How these are carried out in detail can vary greatly, but characteristics like these have been looked to as a way of demarcating scientific activity from non-science, where only enterprises which employ some canonical form of scientific method or methods should be considered science (see also the entry on science and pseudo-science ). On the other hand, more recent debate has questioned whether there is anything like a fixed toolkit of methods which is common across science and only science.
Scientific method should be distinguished from the aims and products of science, such as knowledge, predictions, or control. Methods are the means by which those goals are achieved. Scientific method should also be distinguished from meta-methodology, which includes the values and justifications behind a particular characterization of scientific method (i.e., a methodology) — values such as objectivity, reproducibility, simplicity, or past successes. Methodological rules are proposed to govern method and it is a meta-methodological question whether methods obeying those rules satisfy given values. Finally, method is distinct, to some degree, from the detailed and contextual practices through which methods are implemented. The latter might range over: specific laboratory techniques; mathematical formalisms or other specialized languages used in descriptions and reasoning; technological or other material means; ways of communicating and sharing results, whether with other scientists or with the public at large; or the conventions, habits, enforced customs, and institutional controls over how and what science is carried out.
While it is important to recognize these distinctions, their boundaries are fuzzy. Hence, accounts of method cannot be entirely divorced from their methodological and meta-methodological motivations or justifications, Moreover, each aspect plays a crucial role in identifying methods. Disputes about method have therefore played out at the detail, rule, and meta-rule levels. Changes in beliefs about the certainty or fallibility of scientific knowledge, for instance (which is a meta-methodological consideration of what we can hope for methods to deliver), have meant different emphases on deductive and inductive reasoning, or on the relative importance attached to reasoning over observation (i.e., differences over particular methods.) Beliefs about the role of science in society will affect the place one gives to values in scientific method.
The issue which has shaped debates over scientific method the most in the last half century is the question of how pluralist do we need to be about method? Unificationists continue to hold out for one method essential to science; nihilism is a form of radical pluralism, which considers the effectiveness of any methodological prescription to be so context sensitive as to render it not explanatory on its own. Some middle degree of pluralism regarding the methods embodied in scientific practice seems appropriate. But the details of scientific practice vary with time and place, from institution to institution, across scientists and their subjects of investigation. How significant are the variations for understanding science and its success? How much can method be abstracted from practice? This entry describes some of the attempts to characterize scientific method or methods, as well as arguments for a more context-sensitive approach to methods embedded in actual scientific practices.
1. Overview and organizing themes
2. historical review: aristotle to mill, 3.1 logical constructionism and operationalism, 3.2. h-d as a logic of confirmation, 3.3. popper and falsificationism, 3.4 meta-methodology and the end of method, 4. statistical methods for hypothesis testing, 5.1 creative and exploratory practices, 5.2 computer methods and the ‘third way’ of doing science, 6.1 “the scientific method” in science education and as seen by scientists, 6.2 privileged methods and ‘gold standards’, 6.3 scientific method in the court room, 6.4 deviating practices, 7. conclusion, other internet resources, related entries.
This entry could have been given the title Scientific Methods and gone on to fill volumes, or it could have been extremely short, consisting of a brief summary rejection of the idea that there is any such thing as a unique Scientific Method at all. Both unhappy prospects are due to the fact that scientific activity varies so much across disciplines, times, places, and scientists that any account which manages to unify it all will either consist of overwhelming descriptive detail, or trivial generalizations.
The choice of scope for the present entry is more optimistic, taking a cue from the recent movement in philosophy of science toward a greater attention to practice: to what scientists actually do. This “turn to practice” can be seen as the latest form of studies of methods in science, insofar as it represents an attempt at understanding scientific activity, but through accounts that are neither meant to be universal and unified, nor singular and narrowly descriptive. To some extent, different scientists at different times and places can be said to be using the same method even though, in practice, the details are different.
Whether the context in which methods are carried out will be at all relevant, or to what extent it will be so, will depend largely on what one takes the aims of science to be and what one’s own aims are. For most of the history of scientific methodology the assumption has been that the most important output of science is knowledge and so the aim of methodology should be to discover those methods by which scientific knowledge is generated.
Science was seen to embody the most successful form of reasoning (but which form?) to the most certain knowledge claims (but how certain?) on the basis of systematically collected evidence (but what counts as evidence and, in particular, should the evidence of the senses or rather of rational insight take precedence?) Section 2 surveys some of the history, pointing to two major themes. One theme is seeking the right balance between observation and reasoning (and the attendant forms of reasoning which employ them); the other is how certain scientific knowledge is or can be.
Section 3 turns to 20 th century debates on scientific method. In the second half of the 20 th century the epistemic privilege of science faced several challenges and many philosophers of science abandoned the reconstruction of the logic of scientific method. Views changed significantly regarding which functions of science ought to be captured and why. For some, the success of science was better identified with social or cultural features. Historical and sociological turns in the philosophy of science were made, with a demand that greater attention be paid to the non-epistemic aspects of science, such as sociological, institutional, material, and political factors. Even outside of those movements there was an increased specialization in the philosophy of science, with more and more focus on specific fields within science. The combined upshot was very few philosophers arguing any longer for a grand unified methodology of science. Sections 3 and 4 surveys the main positions on scientific method in 20 th century philosophy of science, focusing on where they differ in their preference for confirmation or falsification or for waiving the idea of a special scientific method altogether.
In recent decades, attention has primarily been paid to scientific activities traditionally falling under the rubric of method, such as experimental design and general laboratory practice, the use of statistics, the construction and use of models and diagrams, interdisciplinary collaboration, and science communication. Sections 4–6 attempt to construct a map of the current domains of the study of methods in science.
As these sections illustrate, the question of method is still central to the discourse about science. Scientific method remains a topic for education, for science policy, and among scientists. It arises in the public domain where the demarcation of science is at issue. Some philosophers have recently returned, therefore, to the question of what it is that makes science a unique cultural product. This entry will close with some of these recent attempts at discerning and encapsulating the activities by which scientific knowledge is achieved.
Attempting a history of scientific method compounds the vast scope of the topic. This section briefly surveys the background to modern methodological debates. What can be called the classical view goes back to antiquity, and represents a point of departure for later divergences. [ 1 ]
We begin with a point made by Laudan (1968) in his historical survey of scientific method:
Perhaps the most serious inhibition to the emergence of the history of theories of scientific method as a respectable area of study has been the tendency to conflate it with the general history of epistemology, thereby assuming that the narrative categories and classificatory pigeon-holes applied to the latter are also basic to the former. (1968: 5)
To see knowledge about the natural world as falling under knowledge more generally is an understandable conflation. Histories of theories of method would naturally employ the same narrative categories and classificatory pigeon holes. An important theme of the history of epistemology, for example, is the unification of knowledge, a theme reflected in the question of the unification of method in science. Those who have identified differences in kinds of knowledge have often likewise identified different methods for achieving that kind of knowledge (see the entry on the unity of science ).
Related to the diversities of what is known, and how, are differences over what can be known. Plato (429–347 B.C.E) distinguished the realms of things into the visible and the intelligible. Only the latter, the Forms, could be objects of knowledge. The intelligible truths could be known with the certainty of geometry and deductive reasoning. What could be observed of the material world, however, was by definition imperfect and deceptive, not ideal. The Platonic way of knowledge therefore emphasized reasoning as a method, downplaying the importance of observation. Aristotle (384–322 B.C.E) disagreed, locating the Forms in the natural world as the fundamental principles to be discovered through the inquiry into nature.
Aristotle is recognized as giving the earliest systematic treatise on the nature of scientific inquiry in the western tradition, one which embraced observation and reasoning about the natural world. In the Prior and Posterior Analytics , Aristotle reflects first on the aims and then the methods of inquiry into nature. A number of features can be found which are still considered by most to be essential to science. For Aristotle, empiricism, careful observation (but passive observation, not controlled experiment), is the starting point, though the aim is not merely recording of facts. Science ( epistêmê ), for Aristotle, is a body of properly arranged knowledge or learning—the empirical facts, but also their ordering and display are of crucial importance. The aims of discovery, ordering, and display of facts partly determine the methods required of successful scientific inquiry. Also determinant is the nature of the knowledge being sought, and the explanatory causes proper to that kind of knowledge (see the discussion of the four causes in the entry on Aristotle on causality ).
In addition to careful observation, then, scientific method requires a logic as a system of reasoning for properly arranging, but also inferring beyond, what is known by observation. Methods of reasoning may include induction, prediction, or analogy, among others. Aristotle’s system (along with his catalogue of fallacious reasoning) was collected under the title the Organon . This title would be echoed in later works on scientific reasoning, such as Novum Organon by Francis Bacon, and Novum Organon Restorum by William Whewell (see below). In the Organon reasoning is divided primarily into two forms, a rough division which persists into modern times. The division, known most commonly today as deductive versus inductive method, appears in other eras and methodologies as analysis/synthesis, non-ampliative/ampliative, or even confirmation/verification. The basic idea is that there are two “directions” to proceed in our methods of inquiry: one away from what is observed, to the more fundamental, general, and encompassing principles; the other, leads from the fundamental and general to other possible specific instantiations of those principles.
The basic aim and method of inquiry identified here can be seen as a theme running throughout the next two millennia of reflection on the correct way to seek after knowledge: carefully observe nature and then seek rules or principles which explain or predict its operation. The Aristotelian corpus provided the framework for a commentary tradition on scientific method independent of the science itself (its physics and cosmos.) During the medieval period, figures such as Albertus Magnus (1206–1280), Thomas Aquinas (1225–1274), Robert Grosseteste (1175–1253), Roger Bacon (1214/1220–1292), William of Ockham (1287–1347), Andreas Vesalius (1514–1546), Giacomo Zabarella (1533–1589) all worked to clarify the kind of knowledge which could be obtained by observation and induction, the source of justification of induction, and the best rules for its application. [ 2 ] Many of their contributions we now think of as essential to science (see also Laudan 1968). As Aristotle and Plato had employed a framework of reasoning either “to the forms” or “away from the forms”, medieval thinkers employed directions away from the phenomena or back to the phenomena. In analysis, a phenomena was examined to discover its basic explanatory principles; in synthesis, explanations of a phenomena were constructed from first principles.
During the Scientific Revolution these various strands of argument, experiment, and reason were forged into a dominant epistemic authority. The 16 th –18 th centuries were a period of not only dramatic advance in knowledge about the operation of the natural world—advances in mechanical, medical, biological, political, economic explanations—but also of self-awareness of the revolutionary changes taking place, and intense reflection on the source and legitimation of the method by which the advances were made. The struggle to establish the new authority included methodological moves. The Book of Nature, according to the metaphor of Galileo Galilei (1564–1642) or Francis Bacon (1561–1626), was written in the language of mathematics, of geometry and number. This motivated an emphasis on mathematical description and mechanical explanation as important aspects of scientific method. Through figures such as Henry More and Ralph Cudworth, a neo-Platonic emphasis on the importance of metaphysical reflection on nature behind appearances, particularly regarding the spiritual as a complement to the purely mechanical, remained an important methodological thread of the Scientific Revolution (see the entries on Cambridge platonists ; Boyle ; Henry More ; Galileo ).
In Novum Organum (1620), Bacon was critical of the Aristotelian method for proceeding too quickly and leaping from particulars to universals, largely as dictated by the syllogistic form of reasoning which regularly mixed those two types of propositions. Bacon aimed at the invention of new arts, of principles, of designations and directions for works. His method would be grounded in methodical collection of data and observations, coupled with correction of our senses (and particularly, strictures for the avoidance of the Idols, as he called them, kinds of systematic errors to which naïve observers are prone.) The community of scientists could then climb, by a careful, gradual and unbroken ascent, to reliable general claims.
Bacon’s method has been criticized as impractical and too inflexible for any living, practicing scientist. Whewell would later criticize Bacon in his System of Logic for paying too little attention to the practices of scientists. It is hard to find convincing examples of Bacon’s method being put in to practice in the history of science, but there are a few who have been held up as real examples of 16 th century scientific, inductive method, even if not in the rigid Baconian mold: figures such as Robert Boyle (1627–1691) and William Harvey (1578–1657) (see the entry on Bacon ).
It is to Isaac Newton (1642–1727), however, that historians of science and methodologists have paid the greatest attention, by far. Given the enormous success of his Principia Mathematica and Opticks , this is understandable. The study of Newton’s method has had two main thrusts: the implicit method of the experiments and reasoning presented in the Opticks, and the explicit methodological rules given as the Rules for Philosophising (the Regulae) in Book III of the Principia . [ 3 ] Newton’s law of gravitation, the linchpin of his new cosmology, broke with explanatory conventions of natural philosophy, first for apparently proposing action at a distance, but more generally for not providing “true”, physical causes. The argument for his System of the World ( Principia , Book III) was based on phenomena, not reasoned first principles. This was viewed (mainly on the continent) as insufficient for proper natural philosophy. The Regulae counter this objection, re-defining the aims of natural philosophy by re-defining the method natural philosophers should follow.
- Rule I: No more causes of natural things should be admitted than are both true and sufficient to explain their phenomena.
- Rule II: Therefore, the causes assigned to natural effects of the same kind must be, so far as possible, the same.
- Rule III: Those qualities of bodies that cannot be intended and remitted and that belong to all bodies on which experiments can be made should be taken as qualities of all bodies universally.
- Rule IV: In experimental philosophy, propositions gathered from phenomena by induction should be considered either exactly or very nearly true notwithstanding any contrary hypotheses, until yet other phenomena make such propositions either more exact or liable to exceptions.
To his list of methodological prescriptions should be added Newton’s famous phrase “ hypotheses non fingo ” (commonly translated as “I frame no hypotheses”.) The scientist was not to invent systems but infer explanations from observations, as Bacon had advocated. This would come to be known as inductivism. In the century after Newton, significant clarifications of the Newtonian method were made. Colin Maclaurin (1698–1746), for instance, reconstructed the essential structure of the method as having complementary analysis and synthesis phases, one proceeding away from the phenomena in generalization, the other from the general propositions to derive explanations of new phenomena. Denis Diderot (1713–1784) and editors of the Encyclopédie did much to consolidate and popularize Newtonianism, as did Francesco Algarotti (1721–1764). The emphasis was often the same, as much on the character of the scientist as on their process, a character which is still commonly assumed. The scientist is humble in the face of nature, not beholden to dogma, obeys only his eyes, and follows the truth wherever it leads. It was certainly Voltaire (1694–1778) and du Chatelet (1706–1749) who were most influential in propagating the latter vision of the scientist and their craft, with Newton as hero. Scientific method became a revolutionary force of the Enlightenment. (See also the entries on Newton , Leibniz , Descartes , Boyle , Hume , enlightenment , as well as Shank 2008 for a historical overview.)
Not all 18 th century reflections on scientific method were so celebratory. Famous also are George Berkeley’s (1685–1753) attack on the mathematics of the new science, as well as the over-emphasis of Newtonians on observation; and David Hume’s (1711–1776) undermining of the warrant offered for scientific claims by inductive justification (see the entries on: George Berkeley ; David Hume ; Hume’s Newtonianism and Anti-Newtonianism ). Hume’s problem of induction motivated Immanuel Kant (1724–1804) to seek new foundations for empirical method, though as an epistemic reconstruction, not as any set of practical guidelines for scientists. Both Hume and Kant influenced the methodological reflections of the next century, such as the debate between Mill and Whewell over the certainty of inductive inferences in science.
The debate between John Stuart Mill (1806–1873) and William Whewell (1794–1866) has become the canonical methodological debate of the 19 th century. Although often characterized as a debate between inductivism and hypothetico-deductivism, the role of the two methods on each side is actually more complex. On the hypothetico-deductive account, scientists work to come up with hypotheses from which true observational consequences can be deduced—hence, hypothetico-deductive. Because Whewell emphasizes both hypotheses and deduction in his account of method, he can be seen as a convenient foil to the inductivism of Mill. However, equally if not more important to Whewell’s portrayal of scientific method is what he calls the “fundamental antithesis”. Knowledge is a product of the objective (what we see in the world around us) and subjective (the contributions of our mind to how we perceive and understand what we experience, which he called the Fundamental Ideas). Both elements are essential according to Whewell, and he was therefore critical of Kant for too much focus on the subjective, and John Locke (1632–1704) and Mill for too much focus on the senses. An interesting aspect of Whewell’s fundamental ideas is that they can be discipline relative. An idea can be fundamental even if it is necessary for knowledge only within a given scientific discipline (e.g., chemical affinity for chemistry). (This distinguishes fundamental ideas from the forms and categories of intuition of Kant. See Whewell entry.)
Clarifying fundamental ideas is therefore an essential part of scientific method and scientific progress. Whewell called this process “Discoverer’s Induction”. It was induction, following Bacon or Newton, but Whewell sought to revive Bacon’s account by emphasising the role of ideas in the clear and careful formulation of inductive hypotheses. Whewell’s induction is not merely the collecting of objective facts. The subjective plays a role through what Whewell calls the Colligation of Facts, a creative act of the scientist, the invention of a theory. A theory is then confirmed by testing, where more facts are brought under the theory, called the Consilience of Inductions. Whewell felt that this was the method by which the true laws of nature could be discovered: clarification of fundamental concepts, clever invention of explanations, and careful testing. Mill, in his critique of Whewell, and others who have cast Whewell as a fore-runner of the hypothetico-deductivist view, seem to have under-estimated the importance of this discovery phase in Whewell’s understanding of method (Snyder 1997a,b, 1999). Down-playing the discovery phase would come to characterize methodology of the early 20 th century (see section 3 ).
Mill, in his System of Logic , puts forward instead a narrower view of induction as the essence of scientific method. For Mill, induction is the search first for regularities among events. Among those regularities, some will continue to hold for further observations, eventually gaining the status of laws. One can also look for regularities among the laws discovered in one domain, i.e., for a law of laws. Which “law law” will hold is time and discipline dependent and should be held open to revision. One example is the Law of Universal Causation, and Mill put forward specific methods for identifying causes—now commonly known as Mill’s methods. These five methods look for circumstances which are common among the phenomena of interest, those which are absent when the phenomena are, or those for which both vary together. Mill’s methods are still seen as capturing basic intuitions about experimental methods for finding the relevant explanatory factors ( System of Logic (1843), see Mill entry). The methods advocated by Whewell and Mill, in the end, look similar. Both involve induction and generalization to covering laws. They differ dramatically, however, with respect to the necessity of the knowledge arrived at; that is, at the meta-methodological level (see the entries on Whewell and Mill entries).
3. Logic of method and critical responses
The quantum and relativistic revolutions in physics in the early 20 th century had a profound effect on methodology. The conceptual foundations of both of these physical theories were taken to show the defeasibility of even the most seemingly secure commonsense intuitions about space, time and physical bodies. Certainty of knowledge about the natural world was therefore recognized as unattainable, and instead a renewed empiricism was sought, which rendered science fallible but at the same time rationally justified.
In support of this, analysis of the reasoning of scientists emerged according to which the aspects of scientific method which were of primary importance were the means of testing and confirming of theories. A distinction in methodology was made between the contexts of discovery and of justification. The distinction could be used as a wedge between, on the one hand the particularities of where and how theories or hypotheses are arrived at and, on the other, the underlying reasoning scientists use (whether or not they are aware of it) when assessing theories and judging their adequacy on the basis of the available evidence. By and large, for most of the 20 th century, philosophy of science focused on the second context, although philosophers differed on whether to focus on confirmation or refutation as well as on the many details of how confirmation or refutation could or could not be brought about. By the mid-20 th century these attempts at defining the method of justification and the context distinction itself came under pressure. During the same period, philosophy of science developed rapidly, and from section 4 this entry will therefore shift from a primarily historical treatment of the scientific method towards a primarily thematic one.
Advances in logic and probability held out promise of the possibility of elaborate reconstructions of scientific theories and empirical methods. The best example of this is Rudolf Carnap’s The Logical Structure of the World (1928) Here, Carnap attempted to show that a scientific theory could be understood as a formal axiomatic system—that is, a logic. Insofar as that system referred to the world, it did so because some of its basic sentences could be understood in terms of observations or operations which one could perform to test them. The rest of the theoretical system, including sentences using theoretical or unobservable terms (like electron or force) would then either be meaningful because they could be reduced to observations, or they had purely logical meanings (called analytic, like mathematical identities). This has been referred to as the verifiability criterion of meaning. According to the criterion, any statement not either analytic or verifiable was strictly meaningless. Although the view was endorsed by Carnap in 1928, he would later come to see it as too restrictive (Carnap 1956). Another familiar version of this idea is operationalism of Percy William Bridgman. In The Logic of Modern Physics (1927) Bridgman asserted that every physical concept could be defined in terms of the operations one would perform to verify the application of that concept. Making good on the operationalisation of a concept even as simple as length, however, can easily become enormously complex (for measuring very small lengths, for instance) or impractical (measuring large distances like light years.)
Carl Hempel’s (1950, 1951) criticisms of the verifiability criterion of meaning had enormous influence. He pointed out that universal generalizations, such as most scientific laws, were not strictly meaningful on the criterion. Verifiability and operationalism both seemed too restrictive to capture standard scientific aims and practice. And the tenuous connection between these reconstructions and actual scientific practice was criticized in another way. In both approaches, what are scientific methods are instead recast in methodological roles. Measurements, for example, were looked to as ways of giving meanings to terms. The aim of the philosopher of science was not to understand the methods per se , but to use them to reconstruct theories, their meanings, and their relation to the world. When scientists perform these operations, however, they will not report that they are doing them to give meaning to terms in a formal axiomatic system. This disconnect between methodology and the details of actual scientific practice would seem to violate the empiricism the Logical Positivists, or Bridgman, were committed to. The view that methodology should correspond to practice (to some extent) has been called historicism, or intuitionism. We turn to these criticisms and responses in section 3.4 . [ 4 ]
Positivism also had to contend with the recognition that a purely inductivist approach, along the lines of Bacon-Newton-Mill, was untenable. There was no pure observation, for starters. All observation was theory laden. Theory is required to make any observation, therefore not all theory can be derived from observation alone. (See also the entry on theory and observation in science ). Even granting an observational basis, Hume had already pointed out that one could not argue for inductive conclusions without begging the question by presuming the success of the inductive method. Likewise, positivist attempts at analyzing how a generalization can be confirmed by observations of its instances were subject to a number of criticisms. In his riddle of induction, Goodman (1965) pointed out that for a set of observations, there will be multiple hypotheses that are equally supported. For example, the observation that all emeralds examined before today were green would support equally the two generalization ‘all emeralds are green’ and ‘all emeralds are grue’ where ‘ x is grue’ iff either x has been examined before today and is green or x has not been examined before today and is blue. Goodman suggested that one could distinguish between generalizations that were supported by their instances and those that were not by comparing the entrenchment of their predicates—that is, the degree to which they have formed part of generalizations that have successfully been projected to account for new instances. In this way ‘all emeralds are green’ could be distinguished as more entrenched than ‘all emeralds are grue’. In the ‘Raven Paradox’, Hempel (1965) pointed out that if an observation confirms a given hypothesis, it also confirms all other hypotheses that are logically equivalent to it. For example, the generalization ‘all ravens are black’ is logically equivalent to the generalization ‘all non-black objects are non-ravens’, and the observation of a black raven, a red herring and a white shoe would therefore all confirm the hypothesis that ravens are black. Many find this paradoxical, but Hempel maintained that our intuition is based on a tacit appeal to background knowledge on the prevalence of ravens and non-ravens that prompt us to give more weight to evidence of ravens being black than to evidence of non-black items being non-ravens. (for more on these points of criticism as well as how they have been met, see the entries on confirmation and the problem of induction ). We shall return to more recent attempts at explaining how observations can serve to confirm a scientific theory in section 4 below.
The standard starting point for a non-inductive analysis of the logic of confirmation is known as the Hypothetico-Deductive (H-D) method. In its simplest form, the idea is that a theory, or more specifically a sentence of that theory which expresses some hypothesis, is confirmed by its true consequences. As noted in section 2 , this method had been advanced by Whewell in the 19 th century, as well as Nicod (1924) and others in the 20 th century. Often, Hempel’s (1966) description of the H-D method illustrated by the case of Semmelweiss’ inferential procedures in establishing the cause of childbed fever has been presented as a key account of H-D as well as a foil for criticism of the H-D account of confirmation (see, for example, Lipton’s (2004) discussion of inference to the best explanation; also the entry on confirmation ). Hempel described Semmelsweiss’ procedure as examining various hypotheses that would answer the question about the cause of childbed fever. Some hypotheses conflicted with observable facts and could be rejected as false immediately. Others needed to be tested experimentally by deducing which observable events should follow if the hypothesis were true (what Hempel called the test implications of the hypothesis), then conducting an experiment and observing whether or not the test implications occurred. If the experiment showed the test implication to be false, the hypothesis could be rejected. On the other hand, if the experiment showed the test implications to be true, this did not prove the hypothesis true. Although the confirmation of a test implication does not verify a hypothesis, Hempel did alow that “it provides at least some support, some corroboration or confirmation for it” (Hempel 1966: 8). The degree of this support then depends on the quantity, variety and precision of the supporting evidence.
Another approach that took off from the difficulties with inductive inference was Karl Popper’s critical rationalism or falsificationism (Popper 1959, 1963). Falsification is deductive and similar to H-D in that it involves scientists deducing observational consequences from the hypothesis under test. For Popper, however, the important point was not whatever confirmation successful prediction offered to the hypotheses but rather the logical asymmetry between such confirmations, which require an inductive inference, versus falsification, which can be based on a deductive inference. This simple opposition was later questioned, by Lakatos, among others. (See the entry on historicist theories of scientific rationality. )
Popper stressed that, regardless of the amount of confirming evidence, we can never be certain that a hypothesis is true without committing the fallacy of affirming the consequent. Instead, Popper introduced the notion of corroboration as a measure for how well a theory or hypothesis has survived previous testing—but without implying that this is also a measure for the probability that it is true.
Popper was also motivated by his doubts about the scientific status of theories like the Marxist theory of history or psycho-analysis, and so wanted to draw a line of demarcation between science and pseudo-science. Popper saw this as an importantly different distinction than demarcating science from metaphysics. The latter demarcation was the primary concern of many logical empiricists. Popper used the idea of falsification to draw a line instead between pseudo and proper science. Science was science because it subjected its theories to rigorous tests which offered a high probability of failing and thus refuting the theory. The aim was not, in this way, to verify a theory. This could be done all too easily, even in cases where observations were at first inconsistent with the deduced consequences of the theory, for example by introducing auxiliary hypotheses designed explicitly to save the theory, so-called ad hoc modifications. This was what he saw done in pseudo-science where the theories appeared to be able to explain anything that happened within the field to which they applied. In contrast, science is risky; if observations showed the predictions from a theory to be absent, the theory would be refuted. Hence, scientific hypotheses must be falsifiable. Not only must there exist some possible observation statement which could falsify the hypothesis or theory, were it observed, (Popper called these the hypothesis’ potential falsifiers) it is crucial to the Popperian scientific method that such falsifications be sincerely attempted on a regular basis.
The more potential falsifiers of a hypothesis, the more falsifiable it would be, and the more the hypothesis claimed. Conversely, hypotheses without falsifiers claimed very little or nothing at all. Originally, Popper thought that this meant the introduction of ad hoc hypotheses only to save a theory should not be countenanced as good scientific method. These would undermine the falsifiabililty of a theory. However, Popper later came to recognize that the introduction of modifications (immunizations, he called them) was often an important part of scientific development. Responding to surprising or apparently falsifying observations often generated important new scientific insights. Popper’s own example was the observed motion of Uranus which originally did not agree with Newtonian predictions, but the ad hoc hypothesis of an outer planet explained the disagreement and led to further falsifiable predictions. Popper sought to reconcile the view by blurring the distinction between falsifiable and not falsifiable, and speaking instead of degrees of testability (Popper 1985: 41f.).
From the 1960s on, sustained meta-methodological criticism emerged that drove the philosophical focus away from scientific method. Something brief about those criticisms must be said here, but recommendations for further reading can be found at the end of the entry.
Thomas Kuhn’s The Structure of Scientific Revolutions (1962) begins with a well-known shot across the bow for philosophers of science:
History, if viewed as a repository for more than anecdote or chronology, could produce a decisive transformation in the image of science by which we are now possessed. (1962: 1)
The kind of image Kuhn wanted to transform was the a-historical, rational reconstruction sought by many of the Logical Positivists, though Carnap and other positivists were actually quite sympathetic to Kuhn’s views. (See the entry on the Vienna Circle ). Kuhn shares with other of his contemporaries, such as Feyerabend and Lakatos, a commitment to a more empirical approach to philosophy of science. Namely, the history of science provides important data, and necessary checks, for philosophy of science, including any theory of scientific method.
An examination of the history of science reveals, according to Kuhn, that scientific development occurs in alternating phases. During normal science, the members of the scientific community adhere to the paradigm in place. Their commitment to the paradigm means a commitment to the puzzles to be solved and the acceptable ways of solving them. Confidence in the paradigm remains so long as steady progress is made in solving the shared puzzles. Method in this normal phase operates within a disciplinary matrix (Kuhn’s later concept of a paradigm) which includes standards for problem solving, as well as defines the range of problems the method should be applied to. An important part of a disciplinary matrix is the set of values which provide the norms and aims for scientific method. The main values that Kuhn identifies are prediction, problem solving, simplicity, consistency, and plausibility.
An important by-product of normal science, however, is the accumulation of puzzles which cannot be solved utilizing the resources of the current paradigm. Once the accumulation of these anomalies has reached some critical mass, it can trigger a communal shift to a new paradigm and a new phase of normal science. Importantly, the values that provide the norms and aims for scientific method may have transformed in the meantime. Method may therefore be relative to discipline, time or place
Feyerabend also identified the aims of science as progress, but argued that any methodological prescription would only stifle that progress (Feyerabend 1988). His arguments are grounded in re-examining accepted “myths” about the history of science. Heroes of science, like Galileo, are shown to be just as reliant on rhetoric and persuasion as they are on reason and demonstration. Others, like Aristotle, are shown to be far more reasonable and far-reaching in their outlooks then they are given credit for. As a consequence, the only rule that could provide what he took to be sufficient freedom was the vacuous “anything goes”. More generally, even the methodological restriction that science is the best way to pursue knowledge, and to increase knowledge, is too restrictive. Feyerabend suggested instead that science might, in fact, be a threat to a free society, because it and its myth had become so dominant (Feyerabend 1978).
An even more fundamental kind of criticism was offered by several sociologists of science from the 1970s onwards who dismissed what they saw as a false distinction between philosophical accounts of the rational development of science and sociological accounts of the irrational mistakes. Instead, they adhered to a symmetry thesis on which any causal explanation of how scientific knowledge is established needs to be symmetrical in explaining truth and falsity, rationality and irrationality, success and mistakes by the same causal factors (see, e.g., Barnes and Bloor 1982, Bloor 1991). Movements in the Sociology of Science, like the Strong Programme, or in the social dimensions and causes of knowledge more generally led to extended and close examination of detailed case studies in contemporary science and its history. (See the entries on the social dimensions of scientific knowledge and social epistemology .) Well-known examinations by Latour and Woolgar (1979/1986), Knorr-Cetina (1981), Pickering (1984), Shapin and Schaffer (1985) seemed to bear out that it was social ideologies (on a macro-scale) or individual interactions and circumstances (on a micro-scale) which were the primary causal factors in determining which beliefs gained the status of scientific knowledge. As they saw it, in other words, explanatory appeals to scientific method were not empirically well grounded.
By the close of the 20 th century the search by philosophers for the scientific method was flagging. Nola and Sankey (2000b) could introduce their volume on method by remarking that “For some, the whole idea of a theory of scientific method is yester-year’s debate …”.
Despite the many difficulties that philosophers encountered in trying to providing a clear methodology of conformation (or refutation), still important progress has been made on understanding how observation can provide evidence for a given theory. Work in statistics has been crucial for understanding how theories can be tested empirically, and in recent decades a huge literature has developed that attempts to recast confirmation in Bayesian terms. Here these developments can be covered only briefly, and we refer to the entry on confirmation for further details and references.
Statistics has come to play an increasingly important role in the methodology of the experimental sciences from the 19 th century onwards. At that time, statistics and probability theory took on a methodological role as an analysis of inductive inference, and attempts to ground the rationality of induction in the axioms of probability theory have continued throughout the 20 th century and in to the present. Developments in the theory of statistics itself, meanwhile, have had a direct and immense influence on the experimental method, including methods for measuring the uncertainty of observations such as the Method of Least Squares developed by Legendre and Gauss in the early 19 th century, criteria for the rejection of outliers proposed by Peirce by the mid-19 th century, and the significance tests developed by Gosset (a.k.a. “Student”), Fisher, Neyman & Pearson and others in the 1920s and 1930s (see, e.g., Swijtink 1987 for a brief historical overview; and also the entry on C.S. Peirce ).
These developments within statistics then in turn led to a reflective discussion among both statisticians and philosophers of science on how to perceive the process of hypothesis testing: whether it was a rigorous statistical inference that could provide a numerical expression of the degree of confidence in the tested hypothesis, or if it should be seen as a decision between different courses of actions that also involved a value component. This led to a major controversy among Fisher on the one side and Neyman and Pearson on the other (see especially Fisher 1955, Neyman 1956 and Pearson 1955, and for analyses of the controversy, e.g., Howie 2002, Marks 2000, Lenhard 2006). On Fisher’s view, hypothesis testing was a methodology for when to accept or reject a statistical hypothesis, namely that a hypothesis should be rejected by evidence if this evidence would be unlikely relative to other possible outcomes, given the hypothesis were true. In contrast, on Neyman and Pearson’s view, the consequence of error also had to play a role when deciding between hypotheses. Introducing the distinction between the error of rejecting a true hypothesis (type I error) and accepting a false hypothesis (type II error), they argued that it depends on the consequences of the error to decide whether it is more important to avoid rejecting a true hypothesis or accepting a false one. Hence, Fisher aimed for a theory of inductive inference that enabled a numerical expression of confidence in a hypothesis. To him, the important point was the search for truth, not utility. In contrast, the Neyman-Pearson approach provided a strategy of inductive behaviour for deciding between different courses of action. Here, the important point was not whether a hypothesis was true, but whether one should act as if it was.
Similar discussions are found in the philosophical literature. On the one side, Churchman (1948) and Rudner (1953) argued that because scientific hypotheses can never be completely verified, a complete analysis of the methods of scientific inference includes ethical judgments in which the scientists must decide whether the evidence is sufficiently strong or that the probability is sufficiently high to warrant the acceptance of the hypothesis, which again will depend on the importance of making a mistake in accepting or rejecting the hypothesis. Others, such as Jeffrey (1956) and Levi (1960) disagreed and instead defended a value-neutral view of science on which scientists should bracket their attitudes, preferences, temperament, and values when assessing the correctness of their inferences. For more details on this value-free ideal in the philosophy of science and its historical development, see Douglas (2009) and Howard (2003).
In recent decades, philosophical discussions of the evaluation of probabilistic hypotheses by statistical inference have largely focused on Bayesianism that understands probability as a measure of a person’s degree of belief in an event, given the available information, and frequentism that instead understands probability as a long-run frequency of a repeatable event. Hence, for Bayesians probabilities refer to a state of knowledge, whereas for frequentists probabilities refer to frequencies of events (see, e.g., Sober 2008, chapter 1 for a detailed introduction to Bayesianism and frequentism as well as to likelihoodism). Bayesianism aims at providing a quantifiable, algorithmic representation of belief revision, where belief revision is a function of prior beliefs (i.e., background knowledge) and incoming evidence. Bayesianism employs a rule based on Bayes’ theorem, a theorem of the probability calculus which relates conditional probabilities. The probability that a particular hypothesis is true is interpreted as a degree of belief, or credence, of the scientist. There will also be a probability and a degree of belief that a hypothesis will be true conditional on a piece of evidence (an observation, say) being true. Bayesianism proscribes that it is rational for the scientist to update their belief in the hypothesis to that conditional probability should it turn out that the evidence is, in fact, observed. Originating in the work of Neyman and Person, frequentism aims at providing the tools for reducing long-run error rates, such as the error-statistical approach developed by Mayo (1996) that focuses on how experimenters can avoid both type I and type II errors by building up a repertoire of procedures that detect errors if and only if they are present. Both Bayesianism and frequentism have developed over time, they are interpreted in different ways by its various proponents, and their relations to previous criticism to attempts at defining scientific method are seen differently by proponents and critics. The literature, surveys, reviews and criticism in this area are vast and the reader is referred to the entries on Bayesian epistemology and confirmation .
5. Method in Practice
Attention to scientific practice, as we have seen, is not itself new. However, the turn to practice in the philosophy of science of late can be seen as a correction to the pessimism with respect to method in philosophy of science in later parts of the 20 th century, and as an attempted reconciliation between sociological and rationalist explanations of scientific knowledge. Much of this work sees method as detailed and context specific problem-solving procedures, and methodological analyses to be at the same time descriptive, critical and advisory (see Nickles 1987 for an exposition of this view). The following section contains a survey of some of the practice focuses. In this section we turn fully to topics rather than chronology.
A problem with the distinction between the contexts of discovery and justification that figured so prominently in philosophy of science in the first half of the 20 th century (see section 2 ) is that no such distinction can be clearly seen in scientific activity (see Arabatzis 2006). Thus, in recent decades, it has been recognized that study of conceptual innovation and change should not be confined to psychology and sociology of science, but are also important aspects of scientific practice which philosophy of science should address (see also the entry on scientific discovery ). Looking for the practices that drive conceptual innovation has led philosophers to examine both the reasoning practices of scientists and the wide realm of experimental practices that are not directed narrowly at testing hypotheses, that is, exploratory experimentation.
Examining the reasoning practices of historical and contemporary scientists, Nersessian (2008) has argued that new scientific concepts are constructed as solutions to specific problems by systematic reasoning, and that of analogy, visual representation and thought-experimentation are among the important reasoning practices employed. These ubiquitous forms of reasoning are reliable—but also fallible—methods of conceptual development and change. On her account, model-based reasoning consists of cycles of construction, simulation, evaluation and adaption of models that serve as interim interpretations of the target problem to be solved. Often, this process will lead to modifications or extensions, and a new cycle of simulation and evaluation. However, Nersessian also emphasizes that
creative model-based reasoning cannot be applied as a simple recipe, is not always productive of solutions, and even its most exemplary usages can lead to incorrect solutions. (Nersessian 2008: 11)
Thus, while on the one hand she agrees with many previous philosophers that there is no logic of discovery, discoveries can derive from reasoned processes, such that a large and integral part of scientific practice is
the creation of concepts through which to comprehend, structure, and communicate about physical phenomena …. (Nersessian 1987: 11)
Similarly, work on heuristics for discovery and theory construction by scholars such as Darden (1991) and Bechtel & Richardson (1993) present science as problem solving and investigate scientific problem solving as a special case of problem-solving in general. Drawing largely on cases from the biological sciences, much of their focus has been on reasoning strategies for the generation, evaluation, and revision of mechanistic explanations of complex systems.
Addressing another aspect of the context distinction, namely the traditional view that the primary role of experiments is to test theoretical hypotheses according to the H-D model, other philosophers of science have argued for additional roles that experiments can play. The notion of exploratory experimentation was introduced to describe experiments driven by the desire to obtain empirical regularities and to develop concepts and classifications in which these regularities can be described (Steinle 1997, 2002; Burian 1997; Waters 2007)). However the difference between theory driven experimentation and exploratory experimentation should not be seen as a sharp distinction. Theory driven experiments are not always directed at testing hypothesis, but may also be directed at various kinds of fact-gathering, such as determining numerical parameters. Vice versa , exploratory experiments are usually informed by theory in various ways and are therefore not theory-free. Instead, in exploratory experiments phenomena are investigated without first limiting the possible outcomes of the experiment on the basis of extant theory about the phenomena.
In recent years, the development of high throughput instrumentation in molecular biology and neighbouring fields has given rise to a special type of exploratory experimentation that collects and analyses very large amounts of data, and these new ‘omics’ disciplines are often said to represent a break with the ideal of hypothesis-driven science (Burian 2007; Elliott 2007; Waters 2007; O’Malley 2007) and instead described as data-driven research (Leonelli 2012; Strasser 2012) or as a special kind of “convenience experimentation” in which many experiments are done simply because they are extraordinarily convenient to perform (Krohs 2012).
The field of omics just described is possible because of the ability of computers to process, in a reasonable amount of time, the huge quantities of data required. Computers allow for more elaborate experimentation (higher speed, better filtering, more variables, sophisticated coordination and control), but also, through modelling and simulations, might constitute a form of experimentation themselves. Here, too, we can pose a version of the general question of method versus practice: does the practice of using computers fundamentally change scientific method, or merely provide a more efficient means of implementing standard methods?
Because computers can be used to automate measurements, quantifications, calculations, and statistical analyses where, for practical reasons, these operations cannot be otherwise carried out, many of the steps involved in reaching a conclusion on the basis of an experiment are now made inside a “black box”, without the direct involvement or awareness of a human. This has epistemological implications, regarding what we can know, and how we can know it. To have confidence in the results, computer methods are therefore subjected to tests of verification and validation.
The distinction between verification and validation is easiest to characterize in the case of computer simulations. In a typical computer simulation scenario computers are used to numerically integrate differential equations for which no analytic solution is available. The equations are part of the model the scientist uses to represent a phenomenon or system under investigation. Verifying a computer simulation means checking that the equations of the model are being correctly approximated. Validating a simulation means checking that the equations of the model are adequate for the inferences one wants to make on the basis of that model.
A number of issues related to computer simulations have been raised. The identification of validity and verification as the testing methods has been criticized. Oreskes et al. (1994) raise concerns that “validiation”, because it suggests deductive inference, might lead to over-confidence in the results of simulations. The distinction itself is probably too clean, since actual practice in the testing of simulations mixes and moves back and forth between the two (Weissart 1997; Parker 2008a; Winsberg 2010). Computer simulations do seem to have a non-inductive character, given that the principles by which they operate are built in by the programmers, and any results of the simulation follow from those in-built principles in such a way that those results could, in principle, be deduced from the program code and its inputs. The status of simulations as experiments has therefore been examined (Kaufmann and Smarr 1993; Humphreys 1995; Hughes 1999; Norton and Suppe 2001). This literature considers the epistemology of these experiments: what we can learn by simulation, and also the kinds of justifications which can be given in applying that knowledge to the “real” world. (Mayo 1996; Parker 2008b). As pointed out, part of the advantage of computer simulation derives from the fact that huge numbers of calculations can be carried out without requiring direct observation by the experimenter/simulator. At the same time, many of these calculations are approximations to the calculations which would be performed first-hand in an ideal situation. Both factors introduce uncertainties into the inferences drawn from what is observed in the simulation.
For many of the reasons described above, computer simulations do not seem to belong clearly to either the experimental or theoretical domain. Rather, they seem to crucially involve aspects of both. This has led some authors, such as Fox Keller (2003: 200) to argue that we ought to consider computer simulation a “qualtitatively different way of doing science”. The literature in general tends to follow Kaufmann and Smarr (1993) in referring to computer simulation as a “third way” for scientific methodology (theoretical reasoning and experimental practice are the first two ways.). It should also be noted that the debates around these issues have tended to focus on the form of computer simulation typical in the physical sciences, where models are based on dynamical equations. Other forms of simulation might not have the same problems, or have problems of their own (see the entry on computer simulations in science ).
6. Discourse on scientific method
Despite philosophical disagreements, the idea of the scientific method still figures prominently in contemporary discourse on many different topics, both within science and in society at large. Often, reference to scientific method is used in ways that convey either the legend of a single, universal method characteristic of all science, or grants to a particular method or set of methods privilege as a special ‘gold standard’, often with reference to particular philosophers to vindicate the claims. Discourse on scientific method also typically arises when there is a need to distinguish between science and other activities, or for justifying the special status conveyed to science. In these areas, the philosophical attempts at identifying a set of methods characteristic for scientific endeavors are closely related to the philosophy of science’s classical problem of demarcation (see the entry on science and pseudo-science ) and to the philosophical analysis of the social dimension of scientific knowledge and the role of science in democratic society.
One of the settings in which the legend of a single, universal scientific method has been particularly strong is science education (see, e.g., Bauer 1992; McComas 1996; Wivagg & Allchin 2002). [ 5 ] Often, ‘the scientific method’ is presented in textbooks and educational web pages as a fixed four or five step procedure starting from observations and description of a phenomenon and progressing over formulation of a hypothesis which explains the phenomenon, designing and conducting experiments to test the hypothesis, analyzing the results, and ending with drawing a conclusion. Such references to a universal scientific method can be found in educational material at all levels of science education (Blachowicz 2009), and numerous studies have shown that the idea of a general and universal scientific method often form part of both students’ and teachers’ conception of science (see, e.g., Aikenhead 1987; Osborne et al. 2003).
Although occasionally phrased with reference to the H-D method, important historical roots of the legend in science education of a single, universal scientific method are the American philosopher and psychologist Dewey’s account of inquiry in How We Think (1910) and the British mathematician Karl Pearson’s account of science in Grammar of Science (1892). On Dewey’s account, inquiry is divided into the five steps of
(i) a felt difficulty, (ii) its location and definition, (iii) suggestion of a possible solution, (iv) development by reasoning of the bearing of the suggestions, (v) further observation and experiment leading to its acceptance or rejection. (Dewey 1910: 72)
Similarly, on Pearson’s account, scientific investigations start with measurement of data and observation of their correction and sequence from which scientific laws can be discovered with the aid of creative imagination. These laws have to be subject to criticism, and their final acceptance will have equal validity for “all normally constituted minds”. Both Dewey’s and Pearson’s accounts should be seen as generalized abstractions of inquiry and not restricted to the realm of science—although both Dewey and Pearson referred to their respective accounts as ‘the scientific method’.
Occasionally, scientists make sweeping statements about a simple and distinct scientific method, as exemplified by Feynman’s simplified version of a conjectures and refutations method presented, for example, in the last of his 1964 Cornell Messenger lectures. [ 6 ] However, just as often scientists have come to the same conclusion as recent philosophy of science that there is not any unique, easily described scientific method. For example, the physicist and Nobel Laureate Weinberg described in the paper “The Methods of Science … And Those By Which We Live” (1995) how
The fact that the standards of scientific success shift with time does not only make the philosophy of science difficult; it also raises problems for the public understanding of science. We do not have a fixed scientific method to rally around and defend. (1995: 8)
Reference to the scientific method has also often been used to argue for the scientific nature or special status of a particular activity. Philosophical positions that argue for a simple and unique scientific method as a criterion of demarcation, such as Popperian falsification, have often attracted practitioners who felt that they had a need to defend their domain of practice. For example, references to conjectures and refutation as the scientific method are abundant in much of the literature on complementary and alternative medicine (CAM)—alongside the competing position that CAM, as an alternative to conventional biomedicine, needs to develop its own methodology different from that of science.
Also within mainstream science, reference to the scientific method is used in arguments regarding the internal hierarchy of disciplines and domains. A frequently seen argument is that research based on the H-D method is superior to research based on induction from observations because in deductive inferences the conclusion follows necessarily from the premises. (See, e.g., Parascandola (1998) for an analysis of how this argument has been made to downgrade epidemiology compared to the laboratory sciences.) Similarly, based on an examination of the practices of major funding institutions such as the National Institutes of Health (NIH), the National Science Foundation (NSF) and the Biomedical Sciences Research Practices (BBSRC) in the UK, O’Malley et al. (2009) have argued that funding agencies seem to have a tendency to adhere to the view that the primary activity of science is to test hypotheses, while descriptive and exploratory research is seen as merely preparatory activities that are valuable only insofar as they fuel hypothesis-driven research.
In some areas of science, scholarly publications are structured in a way that may convey the impression of a neat and linear process of inquiry from stating a question, devising the methods by which to answer it, collecting the data, to drawing a conclusion from the analysis of data. For example, the codified format of publications in most biomedical journals known as the IMRAD format (Introduction, Method, Results, Analysis, Discussion) is explicitly described by the journal editors as “not an arbitrary publication format but rather a direct reflection of the process of scientific discovery” (see the so-called “Vancouver Recommendations”, ICMJE 2013: 11). However, scientific publications do not in general reflect the process by which the reported scientific results were produced. For example, under the provocative title “Is the scientific paper a fraud?”, Medawar argued that scientific papers generally misrepresent how the results have been produced (Medawar 1963/1996). Similar views have been advanced by philosophers, historians and sociologists of science (Gilbert 1976; Holmes 1987; Knorr-Cetina 1981; Schickore 2008; Suppe 1998) who have argued that scientists’ experimental practices are messy and often do not follow any recognizable pattern. Publications of research results, they argue, are retrospective reconstructions of these activities that often do not preserve the temporal order or the logic of these activities, but are instead often constructed in order to screen off potential criticism (see Schickore 2008 for a review of this work).
Philosophical positions on the scientific method have also made it into the court room, especially in the US where judges have drawn on philosophy of science in deciding when to confer special status to scientific expert testimony. A key case is Daubert vs Merrell Dow Pharmaceuticals (92-102, 509 U.S. 579, 1993). In this case, the Supreme Court argued in its 1993 ruling that trial judges must ensure that expert testimony is reliable, and that in doing this the court must look at the expert’s methodology to determine whether the proffered evidence is actually scientific knowledge. Further, referring to works of Popper and Hempel the court stated that
ordinarily, a key question to be answered in determining whether a theory or technique is scientific knowledge … is whether it can be (and has been) tested. (Justice Blackmun, Daubert v. Merrell Dow Pharmaceuticals; see Other Internet Resources for a link to the opinion)
But as argued by Haack (2005a,b, 2010) and by Foster & Hubner (1999), by equating the question of whether a piece of testimony is reliable with the question whether it is scientific as indicated by a special methodology, the court was producing an inconsistent mixture of Popper’s and Hempel’s philosophies, and this has later led to considerable confusion in subsequent case rulings that drew on the Daubert case (see Haack 2010 for a detailed exposition).
The difficulties around identifying the methods of science are also reflected in the difficulties of identifying scientific misconduct in the form of improper application of the method or methods of science. One of the first and most influential attempts at defining misconduct in science was the US definition from 1989 that defined misconduct as
fabrication, falsification, plagiarism, or other practices that seriously deviate from those that are commonly accepted within the scientific community . (Code of Federal Regulations, part 50, subpart A., August 8, 1989, italics added)
However, the “other practices that seriously deviate” clause was heavily criticized because it could be used to suppress creative or novel science. For example, the National Academy of Science stated in their report Responsible Science (1992) that it
wishes to discourage the possibility that a misconduct complaint could be lodged against scientists based solely on their use of novel or unorthodox research methods. (NAS: 27)
This clause was therefore later removed from the definition. For an entry into the key philosophical literature on conduct in science, see Shamoo & Resnick (2009).
The question of the source of the success of science has been at the core of philosophy since the beginning of modern science. If viewed as a matter of epistemology more generally, scientific method is a part of the entire history of philosophy. Over that time, science and whatever methods its practioners may employ have changed dramatically. Today, many philosophers have taken up the banners of pluralism or of practice to focus on what are, in effect, fine-grained and contextually limited examinations of scientific method. Others hope to shift perspectives in order to provide a renewed general account of what characterizes the activity we call science.
One such perspective has been offered recently by Hoyningen-Huene (2008, 2013), who argues from the history of philosophy of science that after three lengthy phases of characterizing science by its method, we are now in a phase where the belief in the existence of a positive scientific method has eroded and what has been left to characterize science is only its fallibility. First was a phase from Plato and Aristotle up until the 17 th century where the specificity of scientific knowledge was seen in its absolute certainty established by proof from evident axioms; next was a phase up to the mid-19 th century in which the means to establish the certainty of scientific knowledge had been generalized to include inductive procedures as well. In the third phase, which lasted until the last decades of the 20 th century, it was recognized that empirical knowledge was fallible, but it was still granted a special status due to its distinctive mode of production. But now in the fourth phase, according to Hoyningen-Huene, historical and philosophical studies have shown how “scientific methods with the characteristics as posited in the second and third phase do not exist” (2008: 168) and there is no longer any consensus among philosophers and historians of science about the nature of science. For Hoyningen-Huene, this is too negative a stance, and he therefore urges the question about the nature of science anew. His own answer to this question is that “scientific knowledge differs from other kinds of knowledge, especially everyday knowledge, primarily by being more systematic” (Hoyningen-Huene 2013: 14). Systematicity can have several different dimensions: among them are more systematic descriptions, explanations, predictions, defense of knowledge claims, epistemic connectedness, ideal of completeness, knowledge generation, representation of knowledge and critical discourse. Hence, what characterizes science is the greater care in excluding possible alternative explanations, the more detailed elaboration with respect to data on which predictions are based, the greater care in detecting and eliminating sources of error, the more articulate connections to other pieces of knowledge, etc. On this position, what characterizes science is not that the methods employed are unique to science, but that the methods are more carefully employed.
Another, similar approach has been offered by Haack (2003). She sets off, similar to Hoyningen-Huene, from a dissatisfaction with the recent clash between what she calls Old Deferentialism and New Cynicism. The Old Deferentialist position is that science progressed inductively by accumulating true theories confirmed by empirical evidence or deductively by testing conjectures against basic statements; while the New Cynics position is that science has no epistemic authority and no uniquely rational method and is merely just politics. Haack insists that contrary to the views of the New Cynics, there are objective epistemic standards, and there is something epistemologically special about science, even though the Old Deferentialists pictured this in a wrong way. Instead, she offers a new Critical Commonsensist account on which standards of good, strong, supportive evidence and well-conducted, honest, thorough and imaginative inquiry are not exclusive to the sciences, but the standards by which we judge all inquirers. In this sense, science does not differ in kind from other kinds of inquiry, but it may differ in the degree to which it requires broad and detailed background knowledge and a familiarity with a technical vocabulary that only specialists may possess.
- Aikenhead, G.S., 1987, “High-school graduates’ beliefs about science-technology-society. III. Characteristics and limitations of scientific knowledge”, Science Education , 71(4): 459–487.
- Arabatzis, T., 2006, “On the inextricability of the context of discovery and the context of justification”, in Revisiting Discovery and Justification , J. Schickore and F. Steinle (eds.), Dordrecht: Springer, pp. 215–230.
- Barnes, B. and D. Bloor, 1982, “Relativism, Rationalism, and the Sociology of Knowledge”, in Rationality and Relativism , M. Hollis and S. Lukes (eds.), Cambridge: MIT Press, pp. 1–20.
- Bauer, H.H., 1992, Scientific Literacy and the Myth of the Scientific Method , Urbana: University of Illinois Press.
- Bechtel, W. and R.C. Richardson, 1993, Discovering complexity , Princeton, NJ: Princeton University Press.
- Berkeley, G., 1734, The Analyst in De Motu and The Analyst: A Modern Edition with Introductions and Commentary , D. Jesseph (trans. and ed.), Dordrecht: Kluwer Academic Publishers, 1992.
- Blachowicz, J., 2009, “How science textbooks treat scientific method: A philosopher’s perspective”, The British Journal for the Philosophy of Science , 60(2): 303–344.
- Bloor, D., 1991, Knowledge and Social Imagery , Chicago: University of Chicago Press, 2 nd edition.
- Boyle, R., 1682, New experiments physico-mechanical, touching the air , Printed by Miles Flesher for Richard Davis, bookseller in Oxford.
- Bridgman, P.W., 1927, The Logic of Modern Physics , New York: Macmillan.
- –––, 1956, “The Methodological Character of Theoretical Concepts”, in The Foundations of Science and the Concepts of Science and Psychology , Herbert Feigl and Michael Scriven (eds.), Minnesota: University of Minneapolis Press, pp. 38–76.
- Burian, R., 1997, “Exploratory Experimentation and the Role of Histochemical Techniques in the Work of Jean Brachet, 1938–1952”, History and Philosophy of the Life Sciences , 19(1): 27–45.
- –––, 2007, “On microRNA and the need for exploratory experimentation in post-genomic molecular biology”, History and Philosophy of the Life Sciences , 29(3): 285–311.
- Carnap, R., 1928, Der logische Aufbau der Welt , Berlin: Bernary, transl. by R.A. George, The Logical Structure of the World , Berkeley: University of California Press, 1967.
- –––, 1956, “The methodological character of theoretical concepts”, Minnesota studies in the philosophy of science , 1: 38–76.
- Churchman, C.W., 1948, “Science, Pragmatics, Induction”, Philosophy of Science , 15(3): 249–268.
- Darden, L., 1991, Theory Change in Science: Strategies from Mendelian Genetics , Oxford: Oxford University Press
- Dewey, J., 1910, How we think , New York: Dover Publications (reprinted 1997).
- Douglas, H., 2009, Science, Policy, and the Value-Free Ideal , Pittsburgh: University of Pittsburgh Press.
- Elliott, K.C., 2007, “Varieties of exploratory experimentation in nanotoxicology”, History and Philosophy of the Life Sciences , 29(3): 311–334.
- Falcon, Andrea, 2005, Aristotle and the science of nature: Unity without uniformity , Cambridge: Cambridge University Press.
- Feyerabend, P., 1978, Science in a Free Society , London: New Left Books
- –––, 1988, Against Method , London: Verso, 2 nd edition.
- Fisher, R.A., 1955, “Statistical Methods and Scientific Induction”, Journal of The Royal Statistical Society. Series B (Methodological) , 17(1): 69–78.
- Foster, K. and P.W. Huber, 1999, Judging Science. Scientific Knowledge and the Federal Courts , Cambridge: MIT Press.
- Fox Keller, E., 2003, “Models, Simulation, and ‘computer experiments’”, in The Philosophy of Scientific Experimentation , H. Radder (ed.), Pittsburgh: Pittsburgh University Press, 198–215.
- Gilbert, G., 1976, “The transformation of research findings into scientific knowledge”, Social Studies of Science , 6: 281–306.
- Gimbel, S., 2011, Exploring the Scientific Method , Chicago: University of Chicago Press.
- Goodman, N., 1965, Fact , Fiction, and Forecast , Indianapolis: Bobbs-Merrill.
- Haack, S., 1995, “Science is neither sacred nor a confidence trick”, Foundations of Science , 1(3): 323–335.
- –––, 2003, Defending science—within reason , Amherst: Prometheus.
- –––, 2005a, “Disentangling Daubert: an epistemological study in theory and practice”, Journal of Philosophy, Science and Law , 5, Haack 2005a available online . doi:10.5840/jpsl2005513
- –––, 2005b, “Trial and error: The Supreme Court’s philosophy of science”, American Journal of Public Health , 95: S66-S73.
- –––, 2010, “Federal Philosophy of Science: A Deconstruction-and a Reconstruction”, NYUJL & Liberty , 5: 394.
- Harper, W.L., 2011, Isaac Newton’s Scientific Method: Turning Data into Evidence about Gravity and Cosmology , Oxford: Oxford University Press.
- Hempel, C., 1950, “Problems and Changes in the Empiricist Criterion of Meaning”, Revue Internationale de Philosophie , 41(11): 41–63.
- –––, 1951, “The Concept of Cognitive Significance: A Reconsideration”, Proceedings of the American Academy of Arts and Sciences , 80(1): 61–77.
- –––, 1965, Aspects of scientific explanation and other essays in the philosophy of science , New York–London: Free Press.
- –––, 1966, Philosophy of Natural Science , Englewood Cliffs: Prentice-Hall.
- Holmes, F.L., 1987, “Scientific writing and scientific discovery”, Isis , 78(2): 220–235.
- Howard, D., 2003, “Two left turns make a right: On the curious political career of North American philosophy of science at midcentury”, in Logical Empiricism in North America , G.L. Hardcastle & A.W. Richardson (eds), Minneapolis: University of Minnesota Press, pp. 25–93.
- Hoyningen-Huene, P., 2008, “Systematicity: The nature of science”, Philosophia , 36(2): 167–180.
- –––, 2013, Systematicity. The Nature of Science , Oxford: Oxford University Press.
- Howie, D., 2002, Interpreting probability: Controversies and developments in the early twentieth century , Cambridge: Cambridge University Press.
- Hughes, R., 1999, “The Ising Model, Computer Simulation, and Universal Physics”, in Models as Mediators , M. Morgan and M. Morrison (eds.), Cambridge: Cambridge University Press, pp. 97–145
- Hume, D., 1739, A Treatise of Human Nature , D. Fate Norton and M.J. Norton (eds.), Oxford: Oxford University Press, 2000.
- Humphreys, P., 1995, “Computational science and scientific method”, Minds and Machines , 5(1): 499–512.
- ICMJE, 2013, “Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals”, International Committee of Medical Journal Editors, available online , accessed August 13 2014
- Jeffrey, R.C., 1956, “Valuation and Acceptance of Scientific Hypotheses”, Philosophy of Science , 23(3): 237–246.
- Kaufmann, W.J., and L.L. Smarr, 1993, Supercomputing and the Transformation of Science , New York: Scientific American Library.
- Knorr-Cetina, K., 1981, The Manufacture of Knowledge , Oxford: Pergamon Press.
- Krohs, U., 2012, “Convenience experimentation”, Studies in History and Philosophy of Biological and BiomedicalSciences , 43: 52–57.
- Kuhn, T.S., 1962, The Structure of Scientific Revolutions , Chicago: University of Chicago Press
- Latour, B. and S. Woolgar, 1986, Laboratory Life: The Construction of Scientific Facts , Princeton: Princeton University Press, 2 nd edition.
- Laudan, L., 1968, “Theories of scientific method from Plato to Mach”, History of Science , 7(1): 1–63.
- Lenhard, J., 2006, “Models and statistical inference: The controversy between Fisher and Neyman-Pearson”, The British Journal for the Philosophy of Science , 57(1): 69–91.
- Leonelli, S., 2012, “Making Sense of Data-Driven Research in the Biological and the Biomedical Sciences”, Studies in the History and Philosophy of the Biological and Biomedical Sciences , 43(1): 1–3.
- Levi, I., 1960, “Must the scientist make value judgments?”, Philosophy of Science , 57(11): 345–357
- Lindley, D., 1991, Theory Change in Science: Strategies from Mendelian Genetics , Oxford: Oxford University Press.
- Lipton, P., 2004, Inference to the Best Explanation , London: Routledge, 2 nd edition.
- Marks, H.M., 2000, The progress of experiment: science and therapeutic reform in the United States, 1900–1990 , Cambridge: Cambridge University Press.
- Mayo, D.G., 1996, Error and the Growth of Experimental Knowledge , Chicago: University of Chicago Press.
- McComas, W.F., 1996, “Ten myths of science: Reexamining what we think we know about the nature of science”, School Science and Mathematics , 96(1): 10–16.
- Medawar, P.B., 1963/1996, “Is the scientific paper a fraud”, in The Strange Case of the Spotted Mouse and Other Classic Essays on Science , Oxford: Oxford University Press, 33–39.
- Mill, J.S., 1963, Collected Works of John Stuart Mill , J. M. Robson (ed.), Toronto: University of Toronto Press
- NAS, 1992, Responsible Science: Ensuring the integrity of the research process , Washington DC: National Academy Press.
- Nersessian, N.J., 1987, “A cognitive-historical approach to meaning in scientific theories”, in The process of science , N. Nersessian (ed.), Berlin: Springer, pp. 161–177.
- –––, 2008, Creating Scientific Concepts , Cambridge: MIT Press.
- Newton, I., 1726, Philosophiae naturalis Principia Mathematica (3 rd edition), in The Principia: Mathematical Principles of Natural Philosophy: A New Translation , I.B. Cohen and A. Whitman (trans.), Berkeley: University of California Press, 1999.
- –––, 1704, Opticks or A Treatise of the Reflections, Refractions, Inflections & Colors of Light , New York: Dover Publications, 1952.
- Neyman, J., 1956, “Note on an Article by Sir Ronald Fisher”, Journal of the Royal Statistical Society. Series B (Methodological) , 18: 288–294.
- Nickles, T., 1987, “Methodology, heuristics, and rationality”, in Rational changes in science: Essays on Scientific Reasoning , J.C. Pitt (ed.), Berlin: Springer, pp. 103–132.
- Nicod, J., 1924, Le problème logique de l’induction , Paris: Alcan. (Engl. transl. “The Logical Problem of Induction”, in Foundations of Geometry and Induction , London: Routledge, 2000.)
- Nola, R. and H. Sankey, 2000a, “A selective survey of theories of scientific method”, in Nola and Sankey 2000b: 1–65.
- –––, 2000b, After Popper, Kuhn and Feyerabend. Recent Issues in Theories of Scientific Method , London: Springer.
- –––, 2007, Theories of Scientific Method , Stocksfield: Acumen.
- Norton, S., and F. Suppe, 2001, “Why atmospheric modeling is good science”, in Changing the Atmosphere: Expert Knowledge and Environmental Governance , C. Miller and P. Edwards (eds.), Cambridge, MA: MIT Press, 88–133.
- O’Malley, M., 2007, “Exploratory experimentation and scientific practice: Metagenomics and the proteorhodopsin case”, History and Philosophy of the Life Sciences , 29(3): 337–360.
- O’Malley, M., C. Haufe, K. Elliot, and R. Burian, 2009, “Philosophies of Funding”, Cell , 138: 611–615.
- Oreskes, N., K. Shrader-Frechette, and K. Belitz, 1994, “Verification, Validation and Confirmation of Numerical Models in the Earth Sciences”, Science , 263(5147): 641–646.
- Osborne, J., S. Simon, and S. Collins, 2003, “Attitudes towards science: a review of the literature and its implications”, International Journal of Science Education , 25(9): 1049–1079.
- Parascandola, M., 1998, “Epidemiology—2 nd -Rate Science”, Public Health Reports , 113(4): 312–320.
- Parker, W., 2008a, “Franklin, Holmes and the Epistemology of Computer Simulation”, International Studies in the Philosophy of Science , 22(2): 165–83.
- –––, 2008b, “Computer Simulation through an Error-Statistical Lens”, Synthese , 163(3): 371–84.
- Pearson, K. 1892, The Grammar of Science , London: J.M. Dents and Sons, 1951
- Pearson, E.S., 1955, “Statistical Concepts in Their Relation to Reality”, Journal of the Royal Statistical Society , B, 17: 204–207.
- Pickering, A., 1984, Constructing Quarks: A Sociological History of Particle Physics , Edinburgh: Edinburgh University Press.
- Popper, K.R., 1959, The Logic of Scientific Discovery , London: Routledge, 2002
- –––, 1963, Conjectures and Refutations , London: Routledge, 2002.
- –––, 1985, Unended Quest: An Intellectual Autobiography , La Salle: Open Court Publishing Co..
- Rudner, R., 1953, “The Scientist Qua Scientist Making Value Judgments”, Philosophy of Science , 20(1): 1–6.
- Rudolph, J.L., 2005, “Epistemology for the masses: The origin of ‘The Scientific Method’ in American Schools”, History of Education Quarterly , 45(3): 341–376
- Schickore, J., 2008, “Doing science, writing science”, Philosophy of Science , 75: 323–343.
- Shamoo, A.E. and D.B. Resnik, 2009, Responsible Conduct of Research , Oxford: Oxford University Press.
- Shank, J.B., 2008, The Newton Wars and the Beginning of the French Enlightenment , Chicago: The University of Chicago Press.
- Shapin, S. and S. Schaffer, 1985, Leviathan and the air-pump , Princeton: Princeton University Press.
- Smith, G.E., 2002, “The Methodology of the Principia”, in The Cambridge Companion to Newton , I.B. Cohen and G.E. Smith (eds.), Cambridge: Cambridge University Press, 138–173.
- Snyder, L.J., 1997a, “Discoverers’ Induction”, Philosophy of Science , 64: 580–604.
- –––, 1997b, “The Mill-Whewell Debate: Much Ado About Induction”, Perspectives on Science , 5: 159–198.
- –––, 1999, “Renovating the Novum Organum: Bacon, Whewell and Induction”, Studies in History and Philosophy of Science , 30: 531–557.
- Sober, E., 2008, Evidence and Evolution. The logic behind the science , Cambridge: Cambridge University Press
- Steinle, F., 1997, “Entering New Fields: Exploratory Uses of Experimentation”, Philosophy of Science (Proceedings), 64: S65–S74.
- –––, 2002, “Experiments in History and Philosophy of Science”, Perspectives on Science , 10(4): 408–432.
- Strasser, B.J., 2012, “Data-driven sciences: From wonder cabinets to electronic databases”, Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences , 43(1): 85–87.
- Suppe, F., 1998, “The Structure of a Scientific Paper”, Philosophy of Science , 65(3): 381–405.
- Swijtink, Z.G., 1987, “The objectification of observation: Measurement and statistical methods in the nineteenth century”, in The probabilistic revolution. Ideas in History, Vol. 1 , L. Kruger (ed.), Cambridge MA: MIT Press, pp. 261–285.
- Waters, C.K., 2007, “The nature and context of exploratory experimentation: An introduction to three case studies of exploratory research”, History and Philosophy of the Life Sciences , 29(3): 275–284.
- Weinberg, S., 1995, “The methods of science… and those by which we live”, Academic Questions , 8(2): 7–13.
- Weissert, T., 1997, The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem , New York: Springer Verlag.
- William H., 1628, Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus , in On the Motion of the Heart and Blood in Animals , R. Willis (trans.), Buffalo: Prometheus Books, 1993.
- Winsberg, E., 2010, Science in the Age of Computer Simulation , Chicago: University of Chicago Press.
- Wivagg, D. & D. Allchin, 2002, “The Dogma of the Scientific Method”, The American Biology Teacher , 64(9): 645–646
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up this entry topic at the Indiana Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
- Blackmun opinion , in Daubert v. Merrell Dow Pharmaceuticals (92-102), 509 U.S. 579 (1993).
- Scientific Method at philpapers. Darrell Rowbottom (ed.).
- Recent Articles | Scientific Method | The Scientist Magazine
Al-Kindi | Albert the Great [= Albertus magnus] | Aquinas, Saint Thomas | Arabic and Islamic Philosophy, disciplines in: natural philosophy and natural science | Arabic and Islamic Philosophy, historical and methodological topics in: Greek sources | Arabic and Islamic Philosophy, historical and methodological topics in: influence of Arabic and Islamic Philosophy on the Latin West | Aristotle | Bacon, Francis | Bacon, Roger | Berkeley, George | biology: experiment in | Boyle, Robert | Cambridge Platonists | confirmation | Descartes, René | Enlightenment | epistemology | epistemology: Bayesian | epistemology: social | Feyerabend, Paul | Galileo Galilei | Grosseteste, Robert | Hempel, Carl | Hume, David | Hume, David: Newtonianism and Anti-Newtonianism | induction: problem of | Kant, Immanuel | Kuhn, Thomas | Leibniz, Gottfried Wilhelm | Locke, John | Mill, John Stuart | More, Henry | Neurath, Otto | Newton, Isaac | Newton, Isaac: philosophy | Ockham [Occam], William | operationalism | Peirce, Charles Sanders | Plato | Popper, Karl | rationality: historicist theories of | Reichenbach, Hans | Schlick, Moritz | science: and pseudo-science | science: theory and observation in | science: unity of | scientific discovery | scientific knowledge: social dimensions of | simulations in science | skepticism: medieval | space and time: absolute and relational theories of space and motion | Vienna Circle | Whewell, William | Zabarella, Giacomo
Copyright © 2015 by Hanne Andersen < hanne . andersen @ ind . ku . dk > Brian Hepburn < brian . hepburn @ wichita . edu >
Support SEP
Mirror sites.
View this site from another server:
- Info about mirror sites
The Stanford Encyclopedia of Philosophy is copyright © 2016 by The Metaphysics Research Lab , Center for the Study of Language and Information (CSLI), Stanford University
Library of Congress Catalog Data: ISSN 1095-5054
What is the Scientific Method: How does it work and why is it important?
The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA. This ongoing approach promotes reason, evidence, and the pursuit of truth in science.
Updated on October 28, 2024
Beginning in elementary school, we are exposed to the scientific method and taught how to put it into practice. As a tool for learning, it prepares children to think logically and use reasoning when seeking answers to questions.
Rather than jumping to conclusions, the scientific method gives us a recipe for exploring the world through observation and trial and error. We use it regularly, sometimes knowingly in academics or research, and sometimes subconsciously in our daily lives.
In this article we will refresh our memories on the particulars of the scientific method, discussing where it comes from, which elements comprise it, and how it is put into practice. Then, we will consider the importance of the scientific method, who uses it and under what circumstances.
What is the scientific method?
The scientific method is a dynamic process that involves objectively investigating questions through observation and experimentation . Applicable to all scientific disciplines, this systematic approach to answering questions is more accurately described as a flexible set of principles than as a fixed series of steps.
The following representations of the scientific method illustrate how it can be both condensed into broad categories and also expanded to reveal more and more details of the process. These graphics capture the adaptability that makes this concept universally valuable as it is relevant and accessible not only across age groups and educational levels but also within various contexts.
Steps in the scientific method
While the scientific method is versatile in form and function, it encompasses a collection of principles that create a logical progression to the process of problem solving:
- Define a question : Constructing a clear and precise problem statement that identifies the main question or goal of the investigation is the first step. The wording must lend itself to experimentation by posing a question that is both testable and measurable.
- Gather information and resources : Researching the topic in question to find out what is already known and what types of related questions others are asking is the next step in this process. This background information is vital to gaining a full understanding of the subject and in determining the best design for experiments.
- Form a hypothesis : Composing a concise statement that identifies specific variables and potential results, which can then be tested, is a crucial step that must be completed before any experimentation. An imperfection in the composition of a hypothesis can result in weaknesses to the entire design of an experiment.
- Perform the experiments : Testing the hypothesis by performing replicable experiments and collecting resultant data is another fundamental step of the scientific method. By controlling some elements of an experiment while purposely manipulating others, cause and effect relationships are established.
- Analyze the data : Interpreting the experimental process and results by recognizing trends in the data is a necessary step for comprehending its meaning and supporting the conclusions. Drawing inferences through this systematic process lends substantive evidence for either supporting or rejecting the hypothesis.
- Report the results : Sharing the outcomes of an experiment, through an essay, presentation, graphic, or journal article, is often regarded as a final step in this process. Detailing the project's design, methods, and results not only promotes transparency and replicability but also adds to the body of knowledge for future research.
- Retest the hypothesis : Repeating experiments to see if a hypothesis holds up in all cases is a step that is manifested through varying scenarios. Sometimes a researcher immediately checks their own work or replicates it at a future time, or another researcher will repeat the experiments to further test the hypothesis.
Where did the scientific method come from?
Oftentimes, ancient peoples attempted to answer questions about the unknown by:
- Making simple observations
- Discussing the possibilities with others deemed worthy of a debate
- Drawing conclusions based on dominant opinions and preexisting beliefs
For example, take Greek and Roman mythology. Myths were used to explain everything from the seasons and stars to the sun and death itself.
However, as societies began to grow through advancements in agriculture and language, ancient civilizations like Egypt and Babylonia shifted to a more rational analysis for understanding the natural world. They increasingly employed empirical methods of observation and experimentation that would one day evolve into the scientific method .
In the 4th century, Aristotle, considered the Father of Science by many, suggested these elements , which closely resemble the contemporary scientific method, as part of his approach for conducting science:
- Study what others have written about the subject.
- Look for the general consensus about the subject.
- Perform a systematic study of everything even partially related to the topic.
By continuing to emphasize systematic observation and controlled experiments, scholars such as Al-Kindi and Ibn al-Haytham helped expand this concept throughout the Islamic Golden Age .
In his 1620 treatise, Novum Organum , Sir Francis Bacon codified the scientific method, arguing not only that hypotheses must be tested through experiments but also that the results must be replicated to establish a truth. Coming at the height of the Scientific Revolution, this text made the scientific method accessible to European thinkers like Galileo and Isaac Newton who then put the method into practice.
As science modernized in the 19th century, the scientific method became more formalized, leading to significant breakthroughs in fields such as evolution and germ theory. Today, it continues to evolve, underpinning scientific progress in diverse areas like quantum mechanics, genetics, and artificial intelligence.
Why is the scientific method important?
The history of the scientific method illustrates how the concept developed out of a need to find objective answers to scientific questions by overcoming biases based on fear, religion, power, and cultural norms. This still holds true today.
By implementing this standardized approach to conducting experiments, the impacts of researchers’ personal opinions and preconceived notions are minimized. The organized manner of the scientific method prevents these and other mistakes while promoting the replicability and transparency necessary for solid scientific research.
The importance of the scientific method is best observed through its successes, for example:
- “ Albert Einstein stands out among modern physicists as the scientist who not only formulated a theory of revolutionary significance but also had the genius to reflect in a conscious and technical way on the scientific method he was using.” Devising a hypothesis based on the prevailing understanding of Newtonian physics eventually led Einstein to devise the theory of general relativity .
- Howard Florey “Perhaps the most useful lesson which has come out of the work on penicillin has been the demonstration that success in this field depends on the development and coordinated use of technical methods.” After discovering a mold that prevented the growth of Staphylococcus bacteria, Dr. Alexander Flemimg designed experiments to identify and reproduce it in the lab, thus leading to the development of penicillin .
- James D. Watson “Every time you understand something, religion becomes less likely. Only with the discovery of the double helix and the ensuing genetic revolution have we had grounds for thinking that the powers held traditionally to be the exclusive property of the gods might one day be ours. . . .” By using wire models to conceive a structure for DNA, Watson and Crick crafted a hypothesis for testing combinations of amino acids, X-ray diffraction images, and the current research in atomic physics, resulting in the discovery of DNA’s double helix structure .
Final thoughts
As the cases exemplify, the scientific method is never truly completed, but rather started and restarted. It gave these researchers a structured process that was easily replicated, modified, and built upon.
While the scientific method may “end” in one context, it never literally ends. When a hypothesis, design, methods, and experiments are revisited, the scientific method simply picks up where it left off. Each time a researcher builds upon previous knowledge, the scientific method is restored with the pieces of past efforts.
By guiding researchers towards objective results based on transparency and reproducibility, the scientific method acts as a defense against bias, superstition, and preconceived notions. As we embrace the scientific method's enduring principles, we ensure that our quest for knowledge remains firmly rooted in reason, evidence, and the pursuit of truth.
The AJE Team
See our "Privacy Policy"
The Scientific Method
What is the scientific method, research starters, observation, analyze results, draw conclusions.
- Scientific Method Resources
According to Kosso (2011), the scientific method is a specific step-by-step method that aims to answer a question or prove a hypothesis. It is the process used among all scientific disciplines and is used to conduct both small and large experiments. It has been used for centuries to solve scientific problems and identify solutions. While the terminology can be different across disciplines, the scientific method follows these six steps (Larson, 2015):
- Analyze results
- Draw conclusions
Click on each link to learn more about each step in the scientific method, or watch the video below for an introduction to each step.
Research Starters is a feature available when searching DragonQuest . You may notice when you enter a generic search term into DragonQuest that a research starter is your first result.
Research Starter entries are similar to a Wikipedia entry of the topic, but Research Starters are pulled from quality sources such as Salem Press, Encyclopedia Britannica, and American National Biography. Research Starters can be a great place to begin your research, if you're not yet sure about your topic details. There are several Research Starters related to the steps of the scientific method:
- Scientific method
- Research methodology
- Research methods
Using Research Starters
To use Research Starters, click on the title just as you would for any other DragonQuest entry. You will then find a broad overview of the topic. This entry is great for finding
- Subtopics that can narrow your searching
- Background information to support your claims
- Sources you can use and cite in your research
We do not recommend that you use Research Starters as a source itself though, because of the difficulties in citation.
Citing Research Starters
Using Research Starters as an actual source is not recommended.
Just as we do not recommend using Wikipedia as a source, Research Starters is the same. Use Research Starters as a starting point to get ideas about how to narrow your search and to use its bibliography to find sources you can cite.
We recommend this because citing Research Starters can be tricky as sometimes it will have insufficient bibliographic data to create your reference page.
To begin the scientific method, you have to observe something and identify a problem. You can observe basically anything, such as a person, place, object, situation, or environment. Examples of an observation include:
- "My cotton shirt gets more wet in the rain than my friend's silk shirt."
- "I feel more tired after eating a cookie than I do after eating a salad."
Once you have made an observation, it will lead to creating a scientific question (Larson, 2015). The question focuses on a specific part of your observation:
- Why does a cotton shirt get more wet in the rain than a silk shirt?
- Why do I more tired after eating a cookie than if I ate a salad?
Scientific questions lead to research and crafting a hypothesis, which are the next steps in the scientific method. Watch the video below for more information on observations.
Once you identify a topic and question from your observations, it is time to conduct some preliminary research. It is meant to locate a potential answer to your research question or give you ideas on how to draft your hypothesis. In some cases, it can also help you design an experiment once you determine your hypothesis. It is a good idea to research your topic or problem using the library and/or the Internet. It is also recommended to check out different source types for information, such as:
- Academic journals
- News reports
- Audiovisual media (radio, podcasts, etc.)
Background Information
It is important to gather lots of background information on your topic or problem so you understand the topic thoroughly. It is also critical to find and understand what others have already written about your research question. This prevents you from experimenting on an issue that already has a definitive answer.
If you need assistance in conducting preliminary research, view our guide on locating background information at the bottom of this box.
If you are unsure where you should start researching, you can view our list of science databases through our A-Z database list by selecting "Science" from the subjects dropdown menu. We also have several research guides that cover topics in the sciences, which can be viewed on our Help page.
Not sure where to begin your research? Try searching a database in our A-Z list or using one of our EBSCOhost databases !
- Finding Background Information by Pfeiffer Library Last Updated Jan 7, 2025 10 views this year
When you have gathered enough information on your research question and determined that your question has not already been answered, you can form a hypothesis. A hypothesis is an educated guess or possible explanation meant to answer your research question. It often follows the "if, then..." sentence structure because it explains a cause/effect relationship between two variables. A hypothesis is supposed to form a relationship between the two variables.
- Example hypothesis: "If I soak a penny in lemon juice, then it will look cleaner than if I soak it in soap."
In this example, it is explaining a relationship between a penny and different cleaning agents. While crafting your hypothesis, it is important to make sure that your "then" statement is something that can be measured, either quantitatively or qualitatively. In the above example, an experiment for the hypothesis would be measuring the cleanliness of the penny after being exposed to either soap or lemon juice.
For more information on hypotheses, view DragonQuest's Research Starter on hypotheses here . Alternatively, you can watch the video below for more details on crafting hypotheses.
The fourth step in the scientific method is the experiment stage. This is where you craft an experiment to test your hypothesis. The point of an experiment is to find out how changing one thing impacts another (Larson, 2015). To test a hypothesis, you must implement and change different variables in your experiment.
Anything that you modify in an experiment is considered a variable. There are two types of variables:
- Independent variable: The variable that is modified in an experiment so that is has a direct impact on the dependent variable. It is the variable that you control in the experiment (Larson, 2015).
- Dependent variable: The variable that is being tested in an experiment, whose measure is directly related to the change of the independent variable (the dependent variable is dependent on the independent variable). This is what you measure to prove or disprove your hypothesis.
Every experiment must also have a control group , which is a variable that remains unchanged for the duration of the experiment (Larson, 2015). It is used to compare the results of the dependent variable. In the case of the sample hypothesis above, a control variable would be a penny that does not receive any cleaning agent.
Research Methods
There are several ways to conduct an experiment. The approach you take is dependent on your own strengths and weaknesses, the nature of your topic/hypothesis, and the resources you have available to conduct the experiment. If you are unsure as to what research method you would like to use for your experiment, you can view our research methodologies guide below. DragonQuest also has a Research Starter on research methods, located here .
- Research Methodologies by Pfeiffer Library Last Updated Jan 7, 2025 596 views this year
When designing your experiment:
- Make a list of materials that you will need to conduct your experiment. If you will need to purchase additional materials, create a budget.
- Consider the best locations for your experiment, especially if outside factors (weather, etc.) may effect the results.
- If you need additional funding for an experiment, it is recommended to consider writing a research proposal for the entity from which you want to receive funding. You can view our guide on writing research proposals below.
You can also watch the video below to learn more about designing experiments. Or, you can view DragonQuest's Research Starter on experiments here .
- Writing a Research Proposal by Pfeiffer Library Last Updated Jan 7, 2025 462 views this year
When conducting your experiment:
- Record or write down your experimental procedure so that each variable it tested equally. It is likely that you will conduct your experiment more than once, so it is important that it is conducted exactly the same each time (Larson, 2015).
- Be aware of outside factors that could impact your experiment and results. Outside factors could include weather patterns, time of day, location, and temperature.
- Wear protective equipment to keep yourself safe during the experiment.
- Record your results on a transferrable platform (Google Spreadsheets, Microsoft Excel, etc.), especially if you plan on running statistical analyses on your data using a computer program. You should also back your data up electronically so you do not lose it!
- Use a table or chart to record data by hand. The x-axis (row) of a chart should represent the independent variable, while the y-axis (column) should represent the dependent variable (Riverside Local Schools, n.d.).
- Be prepared for unexpected results. Some experiments can unexpectedly "go wrong" resulting in different data than planned. Do not feel defeated if this happens in your experiment! Once the tests are completed, you can analyze and determine why the experiment went differently.
Before arriving at a conclusion, you must look at all your evidence and analyze it. Data analysis is "the process of interpreting the meaning of the data we have collected, organized, and displayed in the form of a chart or graph" (Riverside Local Schools, p. 1.). If you did not create a graph or chart while recording your data, you may choose to create one to analyze your results. Or, you may choose to create a more elaborate chart from the one you used in the experiment. Graphs and charts organize data so that you can easily identify trends or patterns. Patterns are similarities, differences, and relationships that tell you the "big picture" of an experiment (Riverside Local Schools, n.d.).
Questions to Consider
There are several things to consider when analyzing your data:
- What exactly am I trying to discover from this data?
- How does my data relate to my hypothesis?
- Are there any noticeable patterns or trends in the data? If so, what do these patterns mean?
- Is my data good quality? Was my data skewed in any way?
- Were there any limitations to retrieving this data during the experiment?
Once you have identified patterns or trends and considered the above questions, you can summarize your findings to draw your final conclusions.
Drawing conclusions is the final step in the scientific method. It gives you the opportunity to combine your findings and communicate them to your audience. A conclusion is "a summary of what you have learned from the experiment" (Riverside Local Schools, p. 1). To draw a conclusion, you will compare your data analysis to your hypothesis and make a statement based on the comparison. Your conclusion should answer the following questions:
- Was your hypothesis correct?
- Does my data support my hypothesis?
- If your hypothesis was incorrect, what did you learn from the experiment?
- Do you need to change a variable if the experiment is repeated?
- Is your data coherent and easy to understand?
- If the experiment failed, what did you learn?
A strong conclusion should also (American Psychological Association, 2021):
- Be justifiable by the data you collected.
- Provide generalizations that are limited to the sample you studied.
- Relate your preliminary research (background information) to your experiment and state how your conclusion is relevant.
- Be logical and address any potential discrepancies (American Psychological Association, 2021).
Reporting Your Results
Once you have drawn your conclusions, you will communicate your results to others. This can be in the form of a formal research paper, presentation, or assignment that you submit to an instructor for a grade. If you are looking to submit an original work to an academic journal, it will require approval and undergo peer-review before being published. However, it is important to be aware of predatory publishers. You can view our guide on predatory publishing below.
- Predatory Publishing by Pfeiffer Library Last Updated Aug 2, 2023 13 views this year
- << Previous: Welcome
- Next: Scientific Method Resources >>
- Last Updated: Jan 7, 2025 2:35 PM
- URL: https://library.tiffin.edu/thescientificmethod
IMAGES
COMMENTS
The six steps of the scientific method include: 1) asking a question about something you observe, 2) doing background research to learn what is already known about the topic, 3) constructing a hypothesis, 4) experimenting to test the hypothesis, 5) analyzing the data from the experiment and drawing conclusions, and 6) communicating the results ...
Research methods are ways of collecting and analyzing data. Common methods include surveys, experiments, interviews, and observations.
Dec 20, 2024 · Scientific method, mathematical and experimental technique employed in the sciences. More specifically, it is the technique used in the construction and testing of a scientific hypothesis. The scientific method is applied broadly across the sciences.
Scientific researches are studies that should be systematically planned before performing them. In this review, classification and description of scientific studies, planning stage randomisation and bias are explained. Keywords: Scientific researches, clinic researches, randomisation.
Mar 26, 2024 · Scientific research is defined as a structured process of inquiry designed to collect, analyze, and interpret data to answer a specific question or solve a problem. It adheres to established scientific principles and methodologies to ensure reliability, accuracy, and validity of findings.
The scientific method is an empirical method for acquiring knowledge that has been referred to while doing science since at least the 17th century. The scientific method involves careful observation coupled with rigorous skepticism, because cognitive assumptions can distort the interpretation of the observation.
The study of scientific method is the attempt to discern the activities by which that success is achieved. Among the activities often identified as characteristic of science are systematic observation and experimentation, inductive and deductive reasoning, and the formation and testing of hypotheses and theories. ... Gilbert, G., 1976, “The ...
Oct 27, 2024 · What is the scientific method? The scientific method is a dynamic process that involves objectively investigating questions through observation and experimentation. Applicable to all scientific disciplines, this systematic approach to answering questions is more accurately described as a flexible set of principles than as a fixed series of steps.
The scientific method is a way of ensuring the results one obtains when researching something are both valid and reliable. Quite simply, it is a method of devising a theory regarding something, collecting data relevant to the theory, and a way to systematically test the theory to see if it is “correct.”
Aug 2, 2023 · According to Kosso (2011), the scientific method is a specific step-by-step method that aims to answer a question or prove a hypothesis. It is the process used among all scientific disciplines and is used to conduct both small and large experiments. It has been used for centuries to solve scientific problems and identify solutions.