Operational Definition Psychology – Definition, Examples, and How to Write One
Elizabeth Research
Every good psychology study contains an operational definition for the variables in the research. An operational definition allows the researchers to describe in a specific way what they mean when they use a certain term. Generally, operational definitions are concrete and measurable. Defining variables in this way allows other people to see if the research has validity . Validity here refers to if the researchers are actually measuring what they intended to measure.
Definition: An operational definition is the statement of procedures the researcher is going to use in order to measure a specific variable.
We need operational definitions in psychology so that we know exactly what researchers are talking about when they refer to something. There might be different definitions of words depending on the context in which the word is used. Think about how words mean something different to people from different cultures. To avoid any confusion about definitions, in research we explain clearly what we mean when we use a certain term.
Operational Definition Examples
Example one:.
A researcher wants to measure if age is related to addiction. Perhaps their hypothesis is: the incidence of addiction will increase with age. Here we have two variables, age and addiction. In order to make the research as clear as possible, the researcher must define how they will measure these variables. Essentially, how do we measure someone’s age and how to we measure addiction?
Variable One: Age might seem straightforward. You might be wondering why we need to define age if we all know what age is. However, one researcher might decide to measure age in months in order to get someone’s precise age, while another researcher might just choose to measure age in years. In order to understand the results of the study, we will need to know how this researcher operationalized age. For the sake of this example lets say that age is defined as how old someone is in years.
Variable Two: The variable of addiction is slightly more complicated than age. In order to operationalize it the researcher has to decide exactly how they want to measure addiction. They might narrow down their definition and say that addiction is defined as going through withdrawal when the person stops using a substance. Or the researchers might decide that the definition of addiction is: if someone currently meets the DSM-5 diagnostic criteria for any substance use disorder. For the sake of this example, let’s say that the researcher chose the latter.
Final Definition: In this research study age is defined as participant’s age measured in years and the incidence of addiction is defined as whether or not the participant currently meets the DSM-5 diagnostic criteria for any substance use disorder.
Example Two
A researcher wants to measure if there is a correlation between hot weather and violent crime. Perhaps their guiding hypothesis is: as temperature increases so will violent crime. Here we have two variables, weather and violent crime. In order to make this research precise the researcher will have to operationalize the variables.
Variable One: The first variable is weather. The researcher needs to decide how to define weather. Researchers might chose to define weather as outside temperature in degrees Fahrenheit. But we need to get a little more specific because there is not one stable temperature throughout the day. So the researchers might say that weather is defined as the high recorded temperature for the day measured in degrees Fahrenheit.
Variable Two: The second variable is violent crime. Again, the researcher needs to define how violent crime is measured. Let’s say that for this study it they use the FBI’s definition of violent crime . This definition describes violent crime as “murder and nonnegligent manslaughter, forcible rape, robbery, and aggravated assault”.
However, how do we actually know how many violent crimes were committed on a given day? Researchers might include in the definition something like: the number of people arrested that day for violent crimes as recorded by the local police.
Final Definition: For this study temperature was defined as high recorded temperature for the day measured in degrees Fahrenheit. Violent crime was defined as the number of people arrested in a given day for murder, forcible rape, robbery, and aggravated assault as recorded by the local police.
How to Write an Operational Definition
For the last example take the opportunity to see if you can write a clear operational definition for yourself. Imagine that you are creating a research study and you want to see if group therapy is helpful for treating social anxiety.
To support this process, therapists can use PDF therapy worksheets with their clients. These worksheets are valuable tools for documenting progress, defining treatment variables, and assessing outcomes. Using them ensures consistency in how therapy is delivered and measured, making the research findings more reliable.
Variable One: How are you going to define group therapy? here are some things you might want to consider when creating your operational definition:
- What type of group therapy?
- Who is leading the therapy group?
- How long do people participate in the therapy group for?
- How can you “measure” group therapy?
There is no one way to write the operational definition for this variable. You could say something like group therapy was defined as a weekly cognitive behavioral therapy group led by a licensed MFT held over the course of ten weeks. Remember there are many ways to write an operational definition. You know you have written an effective one if another researcher could pick it up and create a very similar variable based on your definition.
Variable Two: The second variable you need to define is “effective treatment social anxiety”. Again, see if you can come up with an operational definition of this variable. This is a little tricky because you will need to be specific about what an effective treatment is as well as what social anxiety is. Here are some things to consider when writing your definition:
- How do you know a treatment is effective?
- How do you measure the effectiveness of treatment?
- Who provides a reliable definition of social anxiety?
- How can you measure social anxiety?
Again, there is no one right way to write this operational definition. If someone else could recreate the study using your definition it is probably an effective one. Here as one example of how you could operationalize the variable: social anxiety was defined as meeting the DSM-5 criteria for social anxiety and the effectiveness of treatment was defined as the reduction of social anxiety symptoms over the 10 week treatment period.
Final Definition: Take your definition for variable one and your definition for variable two and write them in a clear and succinct way. It is alright for your definition to be more than one sentence.
Why We Need Operational Definitions
There are a number of reasons why researchers need to have operational definitions including:
- Replicability
- Generalizability
- Dissemination
The first reason was mentioned earlier in the post when reading research others should be able to assess the validity of the research. That is, did the researchers measure what they intended to measure? If we don’t know how researchers measured something it is very hard to know if the study had validity.
The next reason it is important to have an operational definition is for the sake of replicability . Research should be designed so that if someone else wanted to replicate it they could. By replicating research and getting the same findings we validate the findings. It is impossible to recreate a study if we are unsure about how they defined or measured the variables.
Another reason we need operational definitions is so that we can understand how generalizable the findings are. In research, we want to know that the findings are true not just for a small sample of people. We hope to get findings that generalize to the whole population. If we do not have operational definitions it is hard to generalize the findings because we don’t know who they generalize to.
Finally, operational definitions are important for the dissemination of information. When a study is done it is generally published in a peer-reviewed journal and might be read by other psychologists, students, or journalists. Researchers want people to read their research and apply their findings. If the person reading the article doesn’t know what they are talking about because a variable is not clear it will be hard to them to actually apply this new knowledge.
Receive updates from my blog!
- Bipolar Disorder
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Student Resources
- Personality Types
- Guided Meditations
- Verywell Mind Insights
- 2024 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support
How to Write a Great Hypothesis
Hypothesis Definition, Format, Examples, and Tips
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk, "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.
Verywell / Alex Dos Diaz
- The Scientific Method
Hypothesis Format
Falsifiability of a hypothesis.
- Operationalization
Hypothesis Types
Hypotheses examples.
- Collecting Data
A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.
Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."
At a Glance
A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.
The Hypothesis in the Scientific Method
In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:
- Forming a question
- Performing background research
- Creating a hypothesis
- Designing an experiment
- Collecting data
- Analyzing the results
- Drawing conclusions
- Communicating the results
The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.
Unless you are creating an exploratory study, your hypothesis should always explain what you expect to happen.
In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.
Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.
In many cases, researchers may find that the results of an experiment do not support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.
In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."
In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."
Elements of a Good Hypothesis
So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:
- Is your hypothesis based on your research on a topic?
- Can your hypothesis be tested?
- Does your hypothesis include independent and dependent variables?
Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the journal articles you read . Many authors will suggest questions that still need to be explored.
How to Formulate a Good Hypothesis
To form a hypothesis, you should take these steps:
- Collect as many observations about a topic or problem as you can.
- Evaluate these observations and look for possible causes of the problem.
- Create a list of possible explanations that you might want to explore.
- After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.
In the scientific method , falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.
Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that if something was false, then it is possible to demonstrate that it is false.
One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.
The Importance of Operational Definitions
A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.
Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.
For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.
These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.
Replicability
One of the basic principles of any type of scientific research is that the results must be replicable.
Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.
Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.
To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.
Hypothesis Checklist
- Does your hypothesis focus on something that you can actually test?
- Does your hypothesis include both an independent and dependent variable?
- Can you manipulate the variables?
- Can your hypothesis be tested without violating ethical standards?
The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:
- Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
- Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
- Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
- Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
- Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
- Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.
A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the dependent variable if you change the independent variable .
The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."
A few examples of simple hypotheses:
- "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
- "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."
- "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
- "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."
Examples of a complex hypothesis include:
- "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
- "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."
Examples of a null hypothesis include:
- "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
- "There is no difference in scores on a memory recall task between children and adults."
- "There is no difference in aggression levels between children who play first-person shooter games and those who do not."
Examples of an alternative hypothesis:
- "People who take St. John's wort supplements will have less anxiety than those who do not."
- "Adults will perform better on a memory task than children."
- "Children who play first-person shooter games will show higher levels of aggression than children who do not."
Collecting Data on Your Hypothesis
Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.
Descriptive Research Methods
Descriptive research such as case studies , naturalistic observations , and surveys are often used when conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.
Once a researcher has collected data using descriptive methods, a correlational study can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.
Experimental Research Methods
Experimental methods are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).
Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually cause another to change.
The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.
Thompson WH, Skau S. On the scope of scientific hypotheses . R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607
Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:]. Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z
Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004
Nosek BA, Errington TM. What is replication ? PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691
Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies . Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18
Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.
By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
- cognitive sophistication
- tolerance of diversity
- exposure to higher levels of math or science
- age (which is currently related to educational level in many countries)
- social class and other variables.
- For example, suppose you designed a treatment to help people stop smoking. Because you are really dedicated, you assigned the same individuals simultaneously to (1) a "stop smoking" nicotine patch; (2) a "quit buddy"; and (3) a discussion support group. Compared with a group in which no intervention at all occurred, your experimental group now smokes 10 fewer cigarettes per day.
- There is no relationship among two or more variables (EXAMPLE: the correlation between educational level and income is zero)
- Or that two or more populations or subpopulations are essentially the same (EXAMPLE: women and men have the same average science knowledge scores.)
- the difference between two and three children = one child.
- the difference between eight and nine children also = one child.
- the difference between completing ninth grade and tenth grade is one year of school
- the difference between completing junior and senior year of college is one year of school
- In addition to all the properties of nominal, ordinal, and interval variables, ratio variables also have a fixed/non-arbitrary zero point. Non arbitrary means that it is impossible to go below a score of zero for that variable. For example, any bottom score on IQ or aptitude tests is created by human beings and not nature. On the other hand, scientists believe they have isolated an "absolute zero." You can't get colder than that.
IMAGES