Babble Dabble Do

30+ Science Fair Projects That Will Wow The Crowd

February 20, 2022 by Ana Dziengel Leave a Comment

Are your children signing up for the science fair this year? Have you begun the arduous task of looking for  science fair projects  that might pique your child’s interest? Or do you have a child who already has ten ideas they have been dying to try?

The science fair is a great school tradition and a memorable experience for many children (I still remember the life size plaster penguin I made in 5th grade), and if your school doesn’t conduct one, consider starting it!

This year if you are on the lookout for science fair projects I challenge you to think beyond the vinegar volcano (we have “Volcano Alley” at our school because there are so many volcano projects every year). I know, vinegar volcanoes are like a rite of childhood passage, but there are so many other amazing science ideas out there! I have compiled a list of 30+ science fair projects for kids based on their grade level below. Before we get started I wanted to share some tips for getting the most out of the science fair.

This post contains affiliate links.

Science Fair Tips

  • Don’t do the project for your child! This is my number one tip. Many parents have a tendency to jump in and make children’s work “more presentable” or to assist their child so much in the project that it’s hard to know who actually did it. Listen I get it, science is fun and you want your child to have a wonderful presentation…but that’s not really what the science fair is about. It’s about your child learning how to do scientific research and present their findings in their own way. Think of yourself as a helpful guide NOT an assistant, and definitely not the boss.
  • Choose something age  appropriate  When your child is choosing the science fair idea they want to try, make sure it’s age appropriate. Sure we’d all love to make a working robot but there’s nothing more frustrating than trying a project that may be too advanced for the skills of your child. And that’s when a lot of parents resort to doing the project instead. Not a good solution. So make sure your child is capable of completing the steps them self.
  • Make a list of three ideas Have your child select three science fair project ideas and then go over the choices with them. Make sure they understand the steps involved in each project and wether or not they feel comfortable in executing those steps on their own with your guidance.
  • Follow your child’s interests Encourage your children to explore some ideas based on interests they already have. Here’s a list of science books with projects based on things your child already loves!
  • STEAM it up! STEAM projects rock the science fair!!! A great way to get kids to become more familiar with STEAM concepts it to pick science projects that crossover into art, math, engineering and more!  Two STEAM books to consider are  STEAM Kids Play and Learn (my book!) and   STEAM Kids ebook.  Both books will get you started with some great ideas!
  • Read our Science Fair Mini Guide I created this mini guide to walk kids  through all the steps for completing their science fair project. You can check out the full guide here: 

Speak like a scientist! Science Vocabulary to use in your presentation

We’re almost ready to get to the projects! Before we begin, let’s review some science terms. In fact, using these terms in your science fair presentation will be sure to impress your friends and adults!

  • When you watch, see, or notice something you are making an observation
  • When you ask who, what, when, where, why, or how, you are forming a question  
  • When you read a book or an article about your observation, you are doing research
  • When you make a guess based on your observation, question, and research, you are forming a hypothesis
  • When you test your hypothesis, you are conducting an experiment
  • When you change one factor in your experiment at a time while keeping everything else the same, you are changing a variable
  • When you take notes in your journal and write down what you see happening in your experiment, you are logging data  
  • When you examine, or look at, your data, you are analyzing it
  • When you are able answer your question, you are coming to a conclusion

30+ Science Fair Projects for Kids 

Now let’s get on with the science fair projects! I have organized the projects by age/grade level. Click the titles to be taken to the project instructions, unless the instructions follow below.

If you’d rather have the science fair projects list organized by subject you can download our hyperlinked PDF by subscribing to our email list here .

Kindergarten-1st Grade Science Fair Projects

1.  lemon volcano.

Skip the vinegar volcano and try lemon juice! Kids will learn about the chemical reaction between citric acid and baking soda.

2. DIY Bouncy Balls

Learn about polymers while making a DIY toy!  This variation on slime uses a few simple ingredients. <span data-mce-type=”bookmark” style=”display: inline-block; width: 0px; overflow: hidden; line-height: 0;” class=”mce_SELRES_start”></span>

3. Shiny Pennies

A classic experiment that kids love is Shiny Pennies . Collect dirty tarnished pennies and have kids soak them for a minimum of 5 minutes in different acidic liquids. We used vinegar, salsa, lime juice, and lemon juice.  After soaking, remove them from the solution and rinse in soapy water then compare which ones are shiniest. Take notes on which acid worked best to shine the pennies. Variation: Don’t rinse all the pennies after removing them from the different liquids. Can you see a difference in the rinsed vs. non-rinsed pennies? Leave them overnight and see if any of the copper oxidizes (turns green) on the non-rinsed pennies.

pictured above: Regrowing vegetable scraps, DIY Stethoscope, Simple Circuit

4.  Regrow Vegetable Scraps

Did you know you can start an entire garden from vegetable scraps? It works indoors too!

5.  DIY Stethoscope

Make your own stethoscope from a few hardware store parts.

6.  Simple Circuit

For all tech centered kids: Learn how to make a very simple circuit from easy to find items.

pictured above: Chromatography Butterflies, Rainbow Rubber Eggs, Exploring Density with Salt

7. Chromatography 3 Ways

Chromatography is the process of separating mixtures, in this case we will be separating ink into different colors.

  • How to do the Classic Chromatography Project The simplest kids chromatography project using paper towels
  • Chromatography Art Turn chromatography strips into a woven paper art project!
  • Chromatography Butterflies Learn how to separate colors and create a sweet science based craft!

8. Exploring Density with Salt

Why don’t oil and water mix? Find out with this density experiment inspired by Lava Lamps!

9. Rainbow Rubber Eggs

Rubber eggs are another classic science project that kids love. And it’s so easy! I mean does dropping an egg in vinegar and coming back in a few days sound do-able?

2nd-4th grade Science Fair Projects

10. magic rollback can.

You just can’t get rid of this physics project! This project explores the difference between potential and kinetic energy. <span data-mce-type=”bookmark” style=”display: inline-block; width: 0px; overflow: hidden; line-height: 0;” class=”mce_SELRES_start”></span>

pictured above: Bleeding Blossoms, Teleidoscopes, Density Tower

11. Absorption 2 Ways

  • Bleeding Blossoms Explore capillary action and absorption in this science meets art project.
  • Magical Water Blossoms Make beautiful blossoming paper flowers with the help of absorption. This project has a simple wow moment that everyone enjoys watching.

12.  Teleidoscopes

A teleidoscope is a kaliedoscpe without an end. This means you can use it to view anything and everything. Look through one of these and you will be amazed!

13. Density Towers 2 Ways:

Yes, you can layer liquids on top of each other without them mixing! This is a classic project and kids can customize the liquids they choose to layer.

  • Simple Layered Liquids Learn how to make a simple density tower out of kitchen ingredients and then turn it into a lava lamp!
  • Glowing Density Tower This density tower has a bonus science surprise: it glows under UV light!

14.  Magnet Magic

Make a simple hanging magnet structure and explore the magic of magnetism.

pictured above: Chromatography Art, Dry Erase Figure, Overnight Crystals

15. Make a Lemon Battery and a Lime Light

Did you know that a chemical reaction can generate electricity?

16.  Electric Playdough

AKA Squishy Circuits, this project will demonstrate that salt and water conduct electricity!

17. Simple Sound Science

Explore the science of sound with these 4 experiments, then use your knowledge to make your own DIY instrument!

pictured above: Magnetic Sensory Bottle, Magical Plastic Bag, Cartesian Divers

18.  Magnetic Field Sensory Bottle

This will surely be a hit at the Science Fair! Watch metal particles dance and move under the influence of powerful magnets!

19.  Magical Plastic Bag Experiment

It’s not magic, it’s polymers! This easy science fair project uses a minimum of materials but demonstrates how everyday polymers work.

20.  Cartesian Divers

A classic science experiment exploring buoyancy. Make “diver” swim up and down in a bottle using science.

21. Water Drop Microscope

Did you know you can make simple microscope from a plastic bottle and water? This project teaches kids to turn trash into a science tool!

22. Spinning Tops

Learn about centrifugal force and friction with one of these three spinning tops ideas!

  • Spin Art Tops
  • Spin-finite Tops
  • Perler Bead Tops

23. Kinetic Sculpture

Make you own moving sculpture while learning about cams and gears!

<span data-mce-type=”bookmark” style=”display: inline-block; width: 0px; overflow: hidden; line-height: 0;” class=”mce_SELRES_start”></span>

Science Fair Projects for 5th Grade and up

pictured above: Crystal landscapes, Tiny Dancers, Coffee Can Camera Obscura

24. Crystals 3 Ways:

  • Overnight Crystals Grow Epsom salt crystals overnight in your refrigerator.
  • Crystal Wind Catchers Borax crystals are SUPER easy to grow! Turn them into a lovely dangling wind catcher.
  • Crystal Landscapes A more advanced crystal growing experiment using bluing and salt but WOW, these are gorgeous!

25.  Tiny Dancers

These are actually a very simple motor! Kids will learn about electromagnetism by building this motor that can “dance.”

26.  Coffee Can Camera Obscura

Make a simple camera obscura out of an old coffee can.

pictured above: Heat Sensitive Slime, Levitating Pen

27. Heat Sensitive Slime

Click your slime chemistry up a notch by adding in thermochromic paint!

28.  Levitating Pen

Make a pen appear to levitate using a magnet!

29.  Newton’s Cradle

Featured on Dude Perfect! I made one of these for the science fair back in the 1980’s…This science “toy” is mesmerizing for kids and adults alike!

pictured above: Electromagnetic Train, Fake Lung, Articulated Hand

30.  Electromagnetic Train

Incredible display of electricity and magnetism!

31.  Fake Lung

For kids interested in life science and biology, make a model of how our lungs work for the science fair.

32.  Articulated Hand

Another one for biology oriented kids, explore how our joints move by creating an articulated hand.

33. Salty Circuits

In this simple circuit project, kids will create an electrical circuit using salt to conduct electricity and power a light emitting diode (LED).

Are you ready for the science fair?

Whether your child has never participated in the science fair or is an old pro, I hope the science fair projects here will inspire them to have fun, explore science, and get creative the same time.

And if you still need MORE ideas I also have a giant list of chemistry projects for kids that would make amazing science fair starter projects!

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Pin It on Pinterest

Science Bob

  • Experiments
  • Science Fair Ideas
  • Science Q&A
  • Research Help
  • Experiment Blog

Okay, this is the hardest part of the whole project…picking your topic. But here are some ideas to get you started. Even if you don’t like any, they may inspire you to come up with one of your own. Remember, check all project ideas with your teacher and parents, and don’t do any project that would hurt or scare people or animals. Good luck!

  • Does music affect on animal behavior?
  • Does the color of food or drinks affect whether or not we like them?
  • Where are the most germs in your school? ( CLICK for more info. )
  • Does music have an affect on plant growth?
  • Which kind of food do dogs (or any animal) prefer best?
  • Which paper towel brand is the strongest?
  • What is the best way to keep an ice cube from melting?
  • What level of salt works best to hatch brine shrimp?
  • Can the food we eat affect our heart rate?
  • How effective are child-proof containers and locks.
  • Can background noise levels affect how well we concentrate?
  • Does acid rain affect the growth of aquatic plants?
  • What is the best way to keep cut flowers fresh the longest?
  • Does the color of light used on plants affect how well they grow?
  • What plant fertilizer works best?
  • Does the color of a room affect human behavior?
  • Do athletic students have better lung capacity?
  • What brand of battery lasts the longest?
  • Does the type of potting soil used in planting affect how fast the plant grows?
  • What type of food allow mold to grow the fastest?
  • Does having worms in soil help plants grow faster?
  • Can plants grow in pots if they are sideways or upside down?
  • Does the color of hair affect how much static electricity it can carry? (test with balloons)
  • How much weight can the surface tension of water hold?
  • Can some people really read someone else’s thoughts?
  • Which soda decays fallen out teeth the most?
  • What light brightness makes plants grow the best?
  • Does the color of birdseed affect how much birds will eat it?
  • Do natural or chemical fertilizers work best?
  • Can mice learn? (you can pick any animal)
  • Can people tell artificial smells from real ones?
  • What brands of bubble gum produce the biggest bubbles?
  • Does age affect human reaction times?
  • What is the effect of salt on the boiling temperature of water?
  • Does shoe design really affect an athlete’s jumping height?
  • What type of grass seed grows the fastest?
  • Can animals see in the dark better than humans?

Didn’t see one you like? Don’t worry…look over them again and see if they give you an idea for your own project that will work for you. Remember, find something that interests you, and have fun with it.

To download and print this list of ideas CLICK HERE .

science experiments decorations

  • The scientific method
  • science fair resources
  • a little helpful advice

ADS (these ads support our free website)

Share this page.

Cool Science Experiments Headquarters

Making Science Fun, Easy to Teach and Exciting to Learn!

Science Experiments

35 Easy Science Experiments You Can Do Today!

Looking for easy science experiments to do at home or in the classroom? You’re in luck because we’ve got over 35 easy science activities for kids that will help you make science fun for all ages. 

Most of these simple science experiments for kids are easy to prepare, quick to perform, and use household items or inexpensive materials you can find almost anywhere. To connect the fun to the “why it works” you’ll find an easy to teach explanation with every experiment!

Musical Jars Science Experiment 

science experiments decorations

This super easy experiment is simple as it is fun! Kids make their own musical instruments with clear jars and water then investigate sound waves, pitch, and more.

When the experiment is complete, use the colorful new “instrument” for a fun music lesson. Kids can play and take turns to “name that tune”!

Detailed Instructions & Video Tutorial ->  Musical Jars Science Experiment

Viscosity of Liquids Science Experiment

science experiments decorations

Viscosity may be a confusing term for kids at first, but this super easy experiment can help them see viscosity in action!

With marbles, clear jars, and a few household materials, kids will make predictions, record data, and compare the results while they test high and low density liquids.

Detailed Instructions & Video Tutorial ->   Viscosity Science Experiment

Floating Egg Science Experiment

Floating Egg Science Experiment

Can a solid egg float? Kids can find the answer and understand why with this quick science experiment. 

Discover just how easy it can be to make a raw egg float while testing the laws of density. We’ve included additional ideas to try so kids can make predictions and test the concept further.

Detailed Instructions & Video Tutorial ->   Floating Egg Science Experiment

Paper Towel Dry Under Water Experiment

science experiments decorations

Is it possible to keep a paper towel dry even when submerging it under water? The answer is a surprising “yes,” if you use science to help!

Start with the properties of your materials, make a prediction, then explore matter, density, volume, and more.

Detailed Instructions & Video Tutorial ->   Paper Towel Dry Under Water Experiment

Mixing Oil & Water Science Experiment

science experiments decorations

This simple experiment for kids helps them better understand density and the changes that happen when adding an emulsifier to the mix. 

Detailed Instructions & Video Tutorial ->   Mixing Oil & Water Experiment

Will it Float or Sink Science Experiment

Will it sink or will it float? This fun experiment challenges what students think they know about household items!

Students record their hypothesis for each item then test it to compare what they think will happen against their observations.

Detailed Instructions & Video Tutorial -> Float or Sink Science Experiment

Water Temperature Science Experiment

science experiments decorations

What does thermal energy look like? In this easy science experiment, kids are able to see thermal energy as they explore the concept in action.

With clear jars and food coloring, students can quickly see how molecules move differently through hot and cold water.

Detailed Instructions & Video Tutorial -> Water Temperature Science Experiment

Balloon Blow-up Science Experiment

Balloon Blow Up Science Experiment

Kids will discover how matter reacts when heated and cooled as they watch with surprise as baking soda and vinegar blow the balloon up before their eyes.

Detailed Instructions & Video Tutorial -> Balloon Blow-up Science Experiment

Floating Ping Pong Ball Science Experiment

science experiments decorations

Kids will giggle with joy with this super easy experiment. With only a ping pong ball and a hair dryer, students will have a great time while exploring Bernoulli’s Principle in action. 

We’ve included additional ideas to further explore the concept with different objects and observe the change in results.

Detailed Instructions & Video Tutorial -> Floating Ping Pong Ball Science Experiment

Hair Stand on End Science Experiment

science experiments decorations

It’s especially fun for those who’ve never seen static electricity in action before!

Detailed Instructions & Video Tutorial -> Hair Stand on End Science Experiment

Oil Bubbles in Water Science Experiment

science experiments decorations

Kids explore density and experience some chemistry when creating oil bubbles in water with everyday household items.

This experiment is particularly fun when kids see that they’ve made what looks like a lava lamp!

Detailed Instructions & Video Tutorial ->  Oil Bubbles in Water Science Experiment

Color Changing Water Science Experiment

science experiments decorations

Kids will be surprised as they watch a new color being “created” without mixing! Using only a clear bowl and glass, some food coloring, and water, this super easy science experiment is quick and easy with a huge wow factor. 

Try it with yellow and blue to follow along with our demonstration video then try different primary color combinations and explore the results.

Detailed Instructions & Video Tutorial ->  Color Changing Water Science Experiment

Magnetic Paper Clip Chain Science Experiment

science experiments decorations

It may seem a bit like magic but it’s actually science! It’s not hard to capture your kids’ attention with this quick and easy science experiment as they watch paper clips “stick” together and form a chain!

Perfect for younger children, the experiment only takes a few minutes and is a fun way to explore the concept of magnetic transference.

Detailed Instructions & Video Tutorial ->  Magnetic Paper Clip Chain Science Experiment

Is it Magnetic Science Experiment

With only a magnet and a few household items, kids will make and record their predictions, test and observe, then compare what they think is magnetic against the results.

Simple and quick, but some of the results may surprise your students!

Cloud in a Jar Experiment

science experiments decorations

This simple experiment only requires a few materials but really holds student attention as a cloud forms before their eyes!

Kids will learn new weather vocabulary as they explore how physical changes and reactions happen as clouds begin to take form. We’ve also included a helpful chart on the types of clouds.

Detailed Instructions & Video Tutorial ->  Cloud in a Jar Science Experiment

Magic Milk Science Experiment

science experiments decorations

Create a dancing rainbow of colors with this easy science experiment for kids!

Using only a few ordinary kitchen items, your students can create a color explosion in ordinary milk when they add our special ingredient. (Hint: The special ingredient (soap!) includes hydrophilic and hydrophobic molecules that make the magic happen!)

Detailed Instructions & Video Tutorial ->  Magic Milk Science Experiment

Walking Water Science Experiment

Walking Water Science Experiment

Water can’t really walk upwards against gravity, but this cool science experiment makes it seem like it can! 

Kids are able to see the capillary action process and learn how attraction and adhesive forces in action allow water to move out of one glass into another. 

Detailed Instructions & Video Tutorial -> Walking Water Science Experiment

Light Refraction Science Experiment

Light Refraction Science Experiment

The results of this easy science experiment are so amazing, it makes kids (and adults) think it must be magic!

Young scientists watch in surprise while they see an arrow change directions instantly. Investigating refraction couldn’t be more fun!

Detailed Instructions & Video Tutorial -> Light Refraction Science Experiment

Dancing Raisins Experiment

Dancing Raisins Science Experiment - Step (3)

Learn about the reactions of buoyancy and density in this simple science activity for kids. 

They may not need dancing shoes, but give them a glass of soda pop and the raisins in this fun experiment love to dance!

Detailed Instructions & Video Tutorial -> Dancing Raisins Science Experiment

See Sound Experiment

How to See Sound Science Experiment

Kids love this experiment because they are encouraged to drum loudly so they can “see” sound waves in action!

Detailed Instructions & Video Tutorial -> See Sound Science Experiment

Elephant Toothpaste Science Experiment

science experiments decorations

Grab some giant brushes and get ready to make elephant toothpaste! Although you might not be able to get an elephant excited by this super easy experiment, kids love it!

The impressive and quick results created by the chemical reaction and the heat released in the process makes an abundant amount of fun and colorful foam!

Detailed Instructions & Video Tutorial -> Elephant Toothpaste Science Experiment

Upside Down Glass of Water Science Experiment

Upside Down Water Glass Science Experiment

We all know what happens when we turn a glass of water upside down, but what if I told you you can do it without the water spilling out?

The experiment only requires a few common items and you’ll be amazed by the results of air pressure in action!

Detailed Instructions & Video Tutorial -> Upside Down Glass of Water Science Experiment

Pick up Ball with a Jar Science Experiment

science experiments decorations

It almost seems like magic but with the help of science, you can pick up a ball with an open jar!

Instead of magic, this easy science activity uses centripetal force and practice to do what seems like the impossible. 

Detailed Instructions & Video Tutorial -> Pick up Ball with a Jar Experiment

Will It Melt Science Experiment

Can you guess which items will melt? This easy outside experiment challenges what students think they know about the effects of the sun.

Pepper Move Science Experiment

Pepper Move Science Experiment

Can you make pepper move and zoom away with just a light touch of your finger? With science you can!

This experiment only takes a few quick minutes from beginning to end, but the reaction caused by surface tension makes kids want to do it over and over. 

Detailed Instructions & Video Tutorial ->  Pepper Move Science Experiment

Crush a Plastic Bottle Science Experiment

science experiments decorations

Go for it, crush that bottle, but don’t touch it! Although it usually can’t be seen or touched, air pressure is pushing against all surfaces at all times.

With this easy science activity kids can see air pressure at work when they watch a bottle crushes itself!

Detailed Instructions & Video Tutorial -> Crush a Plastic Bottle Science Experiment

Egg in Vinegar Science Experiment

science experiments decorations

This vinegar science experiment will have your eggs and kids bouncing (with excitement!) before you know it!

Kids can watch and explore the results of chemical reactions as the egg changes from something that seems solid into what feels like something bouncy!

Detailed Instructions & Video Tutorial -> Egg in Vinegar Science Experiment

Straw Through a Potato Science Experiment

science experiments decorations

Can you make a normal plastic straw go into a raw, solid potato? It seems like something impossible, but science can easily make it possible!

Pick your potatoes then let kids try their strength as they explore air pressure with this super easy experiment.

Detailed Instructions & Video Tutorial -> Straw Through a Potato Science Experiment

Rainbow in a Jar Science Experiment

science experiments decorations

With only a few household items, they’ll explore mass, volume, and density with every color layer!

Detailed Instructions & Video Tutorial -> Rainbow in a Jar Experiment

Tornado in a Bottle Science Experiment

science experiments decorations

Kids can have fun while learning more about centripetal force with this fun experiment.

With a little muscle and science, kids watch with amazement as they create their own glitter cyclone in a bottle as the centripetal force vortex appears.

Detailed Instructions & Video Tutorial -> Tornado in a Bottle Science Experiment

Why Doesn’t the Water Leak Science Experiment

Water Doesn't Leak Science Experiment

Can you poke holes in a plastic bag full of water without the water leaking out? With this super easy science activity you can!

Kids are stunned as they learn about polymers and how they can do what seems to be impossible.

Detailed Instructions & Video Tutorial -> Why Doesn’t the Water Leak Science Experiment

Use a Bottle to Blow-up a Balloon Experiment

Use a Bottle to Blow-up a Balloon Science Experiment

Is it possible to blow up a balloon with only water and science? 

In this super easy experiment, kids learn more about how matter behaves as they watch a balloon inflate and deflate as a result of matter being heated and cooled.

Detailed Instructions & Video Tutorial -> Use a Bottle to Blow-up a Balloon Experiment

Orange Float Science Experiment

science experiments decorations

Kids explore buoyancy as they learn about and test density in this sink or float science activity.

While it only takes a few minutes, this super easy experiment invites kids to predict what they think will happen then discuss why the heavier orange floats!

Detailed Instructions & Video Tutorial -> Orange Float Science Experiment

Pick up Ice with String Science Experiment

science experiments decorations

With only a few household items, kids learn about freezing temperatures and the results they create in saltwater versus freshwater.

Detailed Instructions & Video Tutorial -> Pick Up Ice with String Science Experiment

Color Changing Walking Water Experiment

science experiments decorations

Using the concepts explored in our popular Walking Water Science Experiment, kids will see color walk from one glass to another and change colors as it goes!

The quick experiment seems to defy gravity like magic, but don’t worry, kids can find out how science makes it work!

Detailed Instructions & Video Tutorial -> Color Changing Walking Water Experiment

Reader Interactions

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

science experiments decorations

  • Privacy Policy
  • Disclosure Policy

Copyright © 2024 · Cool Science Experiments HQ

Science Fun

Science Fun

Science Experiments for Kids:

Science experiments you can do at home!  Explore an ever growing list of hundreds of fun and easy science experiments. Have fun trying these experiments at home or use them for science fair project ideas. Explore experiments by category, newest experiments, most popular experiments, easy at home experiments, or simply scroll down this page for tons of awesome experiment ideas!

Lava Lamp - April 2018

Making A Volcano:

Acids and Bases Can Erupt in Your Faces

science experiments decorations

Orange Fizz:

Dry Erase - March 2018

Awesome Experiments:

science experiments decorations

New Experiments:

Check Out Our Newest Experiments

science experiments decorations

Top Experiments:

science experiments decorations

Easy Experiments:

science experiments decorations

Storm In A Glass:

Home Made Play Dough - July 2014

Home Made Play Dough:

Snow Fluff - December 2017

Snow Fluff:

science experiments decorations

Snow Globe:

Squishy Turkeys - November 2017

Squishy Turkeys:

Rainbow in a Glass! - May 2017

Rainbow in a Glass:

Sizzlin' Snowballs - December 2016

Sizzlin’ Snowballs:

Jello Lenses - August 2018

Jello Lenses:

Ice Fishing - July 2018

Ice Fishing:

Super Cool Soda - Sept. 2017

Super Cool Soda:

Jack-O-Cano - October 2016

Jack-O-Cano:

Dancing Hearts - February 2015

Dancing Hearts:

Marbled Gift Wrap - December 2018

Marbled Gift Wrap:

Massive Expanding Soap - July 2017

Massive Expanding Soap:

Surface Tension Art - February 2017

Surface Tension Art:

Fizzy Fruit

Fizzy Fruit:

Rotting Pumpkin

Rotting Pumpkin:

Explode A Bag

Explode A Bag:

Rotting Pumpkin

Invisible Extinguisher:

Paper Hovercrafts

Paper Hovercrafts:

Fun Fossil Stamps - April 2017

Fun Fossil Stamps:

Ping Pong - October 2018

Cool Crystals:

Balloon Pop! Not! - January 2017

Balloon Pop! Not!

Solar Eclipse Kit - Aug. 2017

Solar Eclipse Kit:

Moldy Apples - September 2016

Moldy Apples:

Cool Off Volcanoes

Cool Off Volcanoes:

Vinegar Pops - June 2016

Vinegar Pops:

science experiments decorations

Make It Rain:

Black Light Blue Beverage - October 2015

Black Light Blue Beverage:

Changing of the Leaves - September 2015

Changing of the Leaves:

Snowflakes - December 2015

Snowflakes:

Egg Drop - November 2015

Water Fireworks:

The Mind of a Student - August 2015

Mind of a Student:

Balloon Speakers - May 2016

Balloon Speakers:

Polar Bear Blubber - January 2016

Polar Bear Blubber:

Gorgeous Gooey Gobstoppers - February 2016

Gorgeous Gooey Gobstoppers:

Olympic Medals - August 2016

Olympic Medals:

Dyed Flowers - May 2015

Dyed Flowers:

Rain, Rain, Don't Go Away Gauge - April 2015

Rain, Rain, Don’t Go Away Gauge:

Blossoming Beans - March 2015

Blossoming Beans:

Sun Dial - January 2015

Butter Fingers:

Polishing Pennies - September 2014

Polishing Pennies:

Dancing Liquid - October 2014

Dancing Liquid:

Floating Egg - April 2014

Floating Egg:

Bendy Bones

Bendy Bones:

Pot of Gold - March 2016

Pot Of Gold:

Layers of Liquids - May 2014

Layers of Liquids:

Crystal Candy - March 2014

Crystal Candy:

STEM Geek logo

32 Cool Science Experiments for Kids (that are Fun AND Easy!)

science experiments decorations

Do you ever want to do science experiments at home with your kids, but you’re not quite sure what to do? Not just any old kitchen science experiment will do – you want something cooler than vinegar + bicarb soda! But, you also want something simple and easy to do – because no-one wants a huge mess from their kids doing crazy science experiments at home!

We understand, and that’s why the writing team here at STEM Geek has put our heads together to come up with the most awesome at-home science experiments for kids! As science enthusiasts and educators, we also wanted to make sure that these are genuine science learning opportunities. So not only are they captivating for the kids, but we also emphasize what questions can be asked as kids explore and apply the scientific method! Plus, we’ve arranged them according to how much time they take: up to 1 hour, 1 to several hours, and long-term.

Related Post: Ultimate Boredom Buster: 101 Things To Do When Kids Are Bored

Science Experiments at Home that take Less than 1 Hour

1. tie-dye milk.

Sounds delicious, right? You’re not actually drinking it, but instead watching science magic happens when you combine dish soap with milk and food coloring. This is a very pretty experiment that draws the focus and mind into what’s happening on the plate, and all because of a little chemistry with everyday items. Well, food dye may not be an everyday item, but it might be after your kids get a hold of this!

So, what’s going on here, scientifically-speaking? Milk is made up of two major ingredients: water and fat. When you add a little dish soap, it bonds with the fat in the milk so strongly that it literally pushes the food coloring and water away from the cotton ball. On a microscopic level, the dish soap is wandering around the milk, which causes the colors to swirl and swirl.

Questions to ask beforehand:

  • Before knowing what will happen to the food coloring, ask the kids what they think will happen when dish soap mixes with milk.
  • Since the major catalyst is fat in the milk, what would happen if you used other types of milk: Skim milk, soy milk, coconut milk?

You’ll need:

  • Round cake pan or plate with high edges
  • Cotton ball (some tutorials show cotton swabs)
  • Dish detergent
  • Different colors of food dye (three or four should do)

Procedure/Instructions:

  • Fill the pan halfway with milk.
  • Drip one color of food dye in one section of the plate away from the center. Four to five drops works and later you can play around with more or less. Do the same for the rest of the colors around the plate.
  • Soak the cotton ball in dish detergent, and when you’re ready for action, place the cotton ball into the center of the pan.
  • Watch the colors racing around, creating a psychedelic tie-dye effect!
  • You can add more cotton balls throughout the dish to see more action.
  • If some food coloring hugs the wall of the plate, take a cotton swab dipped in dish detergent and place it into the food coloring. It will move away!

2. Saturn’s Glowing Rings

using a flashlight for a Saturn’s Glowing Rings experiment

I don’t know about you, but I love everything about space. This experiment shows you how Saturn’s rings are made of rocks and ice chunks even though they look so smooth in pictures. You’ll also see why there are big gaps in the rings. Younger kids take delight in using a flashlight and sprinkling powder, while older kids can get more specific with questions about Saturn and how the rocks and ice stay in orbit.

  • Do Saturn’s rings give off their own light?
  • Why are some rocks and ice chunks more lit up than others?
  • Compare the results of light sprinkles to thicker sprinkles.
  • Strong flashlight
  • Powder (flour, baby powder, etc) in a shaker
  • Very dark room
  • Darken a room and set the flashlight on the edge of a table or counter, pointing it at a blank wall. Lay the newspaper on the floor between the flashlight and the wall.
  • Turn on the flashlight and notice where the light comes from the flashlight and where it hits the wall. You should only see the light from these two places and not from the space between them. This shows you that the light travels through the air without being seen until it hits the wall. The light represents the sun’s light.
  • Now to see how Saturn’s rings glow: Hold the powder shaker and sprinkle some powder over the beam of light where you know the light is traveling. You’ll notice the powder lights up and sparkles in the beam of light. The powder shows in glowing clumps, just like in Saturn’s rings.

3. Breaking Down Colors

We all know that the fun, vibrant colors we see in our lives are created by mixing the basic red, yellow, and blue. In this experiment, you and your child will learn which colors make up those fun shades they have in their art supplies. This also teaches some basic chemistry and uses materials you already have at home. It can be done very simply and expanded to create a large-scale investigation if you love it.

  • Which colors separate out first?
  • Is the same order for each test?
  • Which colors make up the original shade?
  • Do the different types of color (pen, pencil, paint) separate in the same way or differently?
  • Are some separated in a shorter space are the colors the same mixture?
  • Coffee filters
  • Color sources (markers, colored pencils, paint, etc.)
  • A plain pencil
  • To complete this experiment, cut the coffee filters into strips, mark one end with a line the same distance from the bottom on each strip.
  • Color in each strip (between the bottom and line) with your colors, and write at the top what the color and source are (e.g., purple marker).
  • Place each strip in a glass and help it to stand up by folding the top over a pencil (a chopstick, table knife, or any long narrow object will also work) so that it stands up in the glass.
  • Fill the glass up to the top of your colored block, and wait. The water will move up the filter, and the colors will separate out as it goes.
  • Remove the strip once the water gets near the top of the strip to stop the experiment. 

To make this a true experiment, we recommend testing multiple colors and using markers, colored pencils, and paint (as some starting examples). You could test the same colors from each type of art supply to investigate whether they all use the same mix of basic colors to create the same end product.

This post has a nice full description of the methods if you need more detail.

4. Water Xylophone

Water Xylophone - let kids experiment with sound and liquids

This simple experiment will teach your child about sound and pitch using glasses, water, and something to act as a mallet. Don’t let the simplicity deceive you, there are a lot of ways to experiment and learn through this process, and it also brings in an element of music that makes it interesting and engaging.

  • Do you think more water makes the sound higher or lower in pitch?
  • How do you think the shape or size of the glass will affect the sound?
  • How should we arrange the glasses to play a simple song?
  • Do you think this will work with a plastic cup, why or why not?
  • Some glasses
  • Something wood to act as a mallet (we recommend wood so you don’t break the glasses!)
  • A great way to start is with glasses that are the same size, shape, and material, and filling them with different amounts of water.
  • Have your child use the mallet to test how the amount of water affects the sound.
  • From there, it’s a really simple extension to use different sized and shaped glasses (or any glass vessel like jars and bowls) to experiment with how the shape, size, and amount of water in the glass affect the tone. 

To take this one further and really bring in the musical component, you and your child could work out a simple song and create the right tones to play it. If you or your child are musical, you could get very elaborate and creative (try googling harry potter or star wars theme songs on glasses, there are so many options that I couldn’t even choose one)!

5. Ultimate Bottle Flipping

Ah, bottle flipping. The fad that kids can’t get enough of, but parents are well and truly over. The constant thud of semi-filled water bottles being tossed (and hopefully landing upright) is guaranteed to send parents around the twist!

If you can stand it for a bit longer though, there’s a lot of STEM knowledge to be gained in this bottle flipping experiment. As we know, the aim of bottle flipping is to flip a partially filled water bottle underhand and get it to land upright.

In this experiment, kids will learn the importance of observing a result multiple times before changing a variable (the amount of water in the bottle).

  • How much water should you put in the bottle?
  • What is the ideal amount of liquid to get the perfect flip?
  • What should be the ideal amount of water?
  • Was their prediction correct?
  • Why do they think the amount of water affects the chances of landing the bottle?
  • A plastic water bottle
  • Measuring jug
  • Paper to record results
  • Get the kids to start by flipping their bottle with no water in it at all. Kidspot recommends flipping it 50 times for each step, but you could do less if you need to.
  • Try it again with 50ml of water.
  • Keep adding more water until the bottle is full.

If they’re keen, you could try other types or sizes of bottles, or even try different liquids to see if that affects the results!

6. Rainbow in a Jar

Rainbow in a Jar - a kitchen chemistry experiment for kids

This simple science experiment is not only very visually appealing, but it’s also a great way to learn about the density of liquids. Warning though, this one could get messy so make sure kids are in some old clothes and you might want to take it outside! I like this experiment because you’ll probably have most of the materials in your kitchen already!

  • Which liquids they think will be heaviest?
  • Which ones will be lightest?
  • Why do they think that?
  • A glass jar
  • Food coloring
  • Various liquids like honey, corn syrup, dishwashing liquid, olive oil, rubbing alcohol and water.
  • Use the food coloring to make all your liquids a different color. A dropper comes in handy here, but if you don’t have one you can manage without.
  • Slowly add each liquid to the jar (pouring into the middle of the jar is best).
  • Soon, you’ll have different layers of colored liquid forming your very own rainbow in a jar.

You might even get them to draw a diagram of what they think the jar will look like at the end. They can compare this with the experiment results to see if their prediction was correct.

It might also help to talk to your kids first about what density is and how materials are all made of different amounts of molecules. The more molecules a liquid has, the heavier it will be. Playdough to Plato demonstrates a great way of introducing this concept using marbles. 

7. Write Your Own Secret Messages! 

We love science experiments that are made up primarily of supplies that you likely already have in your home.

  • Why do you think this will work?
  • Which liquid do you think will make the best secret message?
  • Why do people write secret messages?
  • Juice (eg. Lemon)
  • Lamp (or anything else that can be used as a heat source)
  • In order to complete this experiment, you’ll need to gather all of your supplies along with a piece of paper, some q-tips, and a lamp or other item that you can use as a heat source.
  • Next, you’ll mix your lemon juice with a slight amount of water. 
  • Using your q-tip, use the mixture you’ve created to begin writing your message. 
  • Allow it to dry. 
  • Once dry, apply heat to it in order to get your message to appear.

Extend this project by attempting to write with a juice and water mixture, a milk and water mixture, or any other variation of the liquids we listed as necessary supplies!

8. Create Your Own Butterfly

Create Your Own Butterfly and learn about capillary action

Your little ones will love practicing their color mixing by creating their very own coffee filter butterflies. Hang them in the windows of your home to spread some cheer and to watch the sun flow through their beautiful wings! 

  • What colors can mix together to make other colors?
  • How do butterflies fly?
  • What do you think will happen when we add water to the markers?
  • Water spray bottle
  • Allow your child to draw on the coffee filter to their heart’s content.
  • Spray it with water and allow the colors to mix together.
  • Allow it to dry thoroughly.
  • Once dry, fold it like a fan and then clip it in the middle.

Ta-da, you’ve created a beautiful butterfly! 

9. Make A Duck Call

Give your family an excuse to head outdoors by allowing your children to craft their own duck calls. Test them out at a local pond and see if you can get the ducks to come closer to you for a healthy veggie snack! 

  • Do you think ducks will be able to hear us with this?
  • What other materials do you think could make this noise?
  • How is what we have created similar to a duck’s beak?
  • Plastic straw
  • Push down on the straw to flatten one end and then cut the flattened end into a point.
  • Flatten out your straw and then blow into it.
  • Feel free to experiment with different amounts of flattening and different point shapes to see how you can adjust the sound.
  • When finished, take your duck call into the wild to test it out.

10. Make Ivory Soap Boats

Make Ivory Soap Boats - a home science experiment that is fun

Did you ever carve items out of soap at camp when you were a child? Give your child the same opportunity. Soap can be carved using safe items, like plastic knives. 

  • Why are we able to carve soap so easily?
  • Do you think our boats float?
  • Why do you think they float or sink?
  • Carving tools (for kids)
  • Allow your child to express their creative side by carving their boat out of soap. 
  • Once they have finished carving it, allow them to test them out in the bathtub. . Extend their learning by discussing density with them–the soap floats because it is less dense than the water.

11. Make Your Own Quicksand 

As John Mullaney famously said, “I thought quicksand would be a much bigger problem in my adult life than it would have turned out.” For some reason, quicksand permeates children’s adventure stories – and their imaginations! 

  • Where can we find quicksand in real life?
  • How do you think quicksand works?
  • What do you think we will need to make our own quicksand?
  • Cornflower (one cup)
  • Water (half cup)
  • A container
  • To make your quicksand, you’ll need to mix the cornflour and water. 
  • Be sure to stir slowly in order to demonstrate – if you stir too quickly, it will become hard and you won’t be able to see it function the way it should!

12. Make Your Own Lava Lamp

Make Your Own Lava Lamp - a cool science experiment

We’ve tried this one in our classrooms, and trust us, our kids go wild year after year. Kids love making something that they can use as home decoration, and they love how easy it is to show new people – this is the experiment that lives on and on! 

  • How do you think density is involved in this experiment?
  • Why don’t the water and oil mix?
  • Why can’t we shake our lava lamps?
  • Clear Plastic Bottle
  • Vegetable Oil
  • Food Coloring
  • Alka-Seltzer
  • Pour water into the plastic bottle until it is approximately one quarter full. 
  • Then pour vegetable oil in until the bottle is almost completely filled. 
  • Allow some time for the oil and water to separate. 
  • It is important that your children do not shake the bottle in this step. It will extend the experiment for no other reason than you waiting for the bubbles to dissipate. 
  • Add as much food coloring as your child deems fit and then drop a piece of Alka-seltzer tablet into the bottle for the lava lamp fun to begin.

13. Guess the Smell

This one will take a little more prep work, but it’s a great touchstone for your children to begin discussing one of their five senses: the sense of smell! 

  • What are examples of times we use our sense of smell?
  • What other senses do we have?
  • If you could only use one sense for the rest of your life, which one?
  • Plastic Cups
  • Smells (eg. coffee, cinnamon, vanilla, lemon juice)
  • Place a variety of common smells in small plastic cups. We like to use coffee, cinnamon, vanilla, and lemon juice. 
  • Pour these in and place tin foil securely over the top of the cup. 
  • Poke small holes in the top of the foil. 
  • Secure the foil with tape (on the sides, not over the holes). 
  • Allow your children to guess the smells and record their findings on paper.

Home Science Experiments that take 1 to Several Hours

14. mangrove bioshield  .

Ecologists and conservationists are pushing for more regulations in building and saving mangrove forests around coastal areas. The reason is represented in this STEM activity. The trees act as a mangrove BioShield (bio = life, shield = protection), showing how natural obstacles can prevent critical damage from marine natural disasters such as tsunamis.

The mangrove BioShield can be for older elementary kids through to high school. Obviously, the younger they are, the more parent involvement. This experiment is done twice to show the effects of having and not having a BioShield. The first part uses little to no trees, and the second uses a forest of trees and rocks.

  • What will happen in a tsunami if the village is without a BioShield? And the village with a BioShield?
  • Would a BioShield help with hurricanes?
  • Would you want to encourage people to save manatee forests if they are beneficial?
  • Medium to large clear, plastic container
  • Newspaper – wad into balls, then cover half of the bottom container – this help to keep the ground sturdy
  • Mud – cover the newspaper and press it in to form a slope down to the empty side of the container. The top side should be flattened for the cardboard houses, then it slopes down into the empty half of the container.
  • Cardboard houses (use the bottoms of milk cartons for the house and popsicle sticks for the roofs, place houses on the mud towards the top of the high slope
  • Model trees or leafy stems from plants – Different amounts for activity 1 and activity 2
  • Several small rocks
  • Cardboard – long enough to fit across the container and tall enough to hold it from out of the water
  • Water – enough to go halfway up the slope

A tsunami without the mangrove forest – insert only one or two trees down the slope. Place the cardboard piece into the water end of the container and move back and forth to create waves. Notice how easy it is for the water to destroy the village you’ve created.

Repeat the process of constructing the village, but this time insert a lot of trees down the slope to where the water meets the mud. They need to be deeply rooted like mangroves, and I’ve found that aquarium plants work well for this reason. Place the rocks within the mangrove forest and in front of the trees. Add a little bit more water. Insert the cardboard again and move it back and forth to create waves.  

15. A Greater Crater

When you look at the night sky and see the moon, one of the first things you notice is its craters. The moon is completely covered in them, and some are so large we can see them from Earth. Meteorites often make the craters that we see when they hit the surface, but it makes us wonder why some craters are so much bigger than others.

This experiment will help you to investigate one of the main reasons why craters come in different sizes.

  • What causes craters?
  • How big do the meteorites have to be to make a crater?
  • What is it about the meteorite that causes the size of the crater?
  • Paper to record your results
  • Flat floor surface for the experiment, large enough for the newspaper to cover
  • Shallow metal pan at least 2 inches deep
  • Flour to fill 2 inches of the pan
  • ¼ cup hot chocolate powder
  • Mesh strainer or flour sifter
  • Large marble (and others of varying sizes if comparing results)
  • Metric ruler
  • Tongs or long tweezers
  • Pour the flour into the pan until it reaches 2 inches. Place the pan on top of the newspaper on a level surface.
  • Sift a layer of hot chocolate powder over the flour (this is so you can better see the rays and other features of the craters).
  • You will be dropping your marble from three different heights, then comparing the sizes of the craters. Measure the diameter (side to side) of the marble and record this on your paper as Marble 1. Hypothesize how large the crater will be and write that next to the diameter of Marble 1.
  • Stand next to your pan and hold the marble at knee height above the flour. Drop the marble (do not throw it, just let it fall from your fingers) into the flour and study the shape of the crater. Look for a rim around the crater or any rays coming from the edges.
  • Measure across the widest part of your crater, from rim to rim and record on your data sheet as Marble 1 – Knee Height – Width or something similar. You can also draw a picture of your results.
  • Very gently use the tongs or long tweezers to remove the marble without destroying the crater.
  • Repeat this procedure from waist height, shoulder height, top of head height. Make sure you aim in different parts of the flour so you don’t land on top of another crater. Record all of your results as the different heights you’re using.
  • Compare your results.
  • You can try again with a different sized marble as “Marble 2” to compare those results with each height as done with Marble 1.

Perhaps now, you’ll look at the moon a little differently!

16. Rube Goldberg Chain Reaction Machine

We’ve all seen them, some pretty far-out there chain reaction machines to complete simple tasks, usually in movies. But they are real , and are becoming even more popular now that we’re all stuck at home for a while. This is a fun way to explore physics with stuff you have at home.

Ask your child to decide what the end goal is (e.g. get the ball into the cup), and ask them to think about creative ways to make it get there. Working together, you can start with small pieces of a circuit to find out how your ball reacts to the set-up, and grow it from there. You can even refer to this video for more ideas:

  • What will happen when the ball bounces off of this wall?
  • How will these dominoes change the speed of the ball?
  • What can we use to make sure that the ball goes in the direction we want it to at this point?
  • What should we put here to get the best bounce? 
  • Paper towel
  • Toilet paper tubes
  • Fixed objects like walls or furniture
  • Any other toys and materials that can be used to build your circuit

To make this a true experiment, it needs to include more than a one-off demonstration, and there are a lot of ways to accomplish this.

  • Set up parallel courses and use different sized or weighted balls to go through the circuit.
  • Set up one elaborate circuit and use different objects one at a time.
  • Set up circuits in different ways to see how different set-ups affect your end goal.

Another experimental component is the process used to create a circuit that reaches your end goal ( like this video about getting the ball into the cup, but you could come up with lots of other endpoints!). Along the way, you and your child get a lot of time to learn about momentum, velocity, friction, energy transfer, and interference (e.g., the cat). 

17. Melting

Melting ice - a very easy kitchen science experiment for kids

This is a simple and fun experiment that can be set up in a short time and then fill-up your day with observations and new experiments. Using only things you already have at home, you can set-up an engaging experiment with your kids!

Ice melts at different rates depending on a variety of factors including temperature, pressure, and if there are impurities (think salt, sugar, dirt) in the ice or touching the ice. There is a lot of opportunities to get creative and do the experiment in multiple ways, keeping your kids engaged and developing their investigative, experimental, and critical thinking skills.

  • Which ice melts the fastest, slowest, and if they have any guesses about why?
  • What other ice-melting experiments they think would be fun: Using different temperature liquids? Using different amounts of ice? Different sized cups?
  • Lots of ice
  • Several matching cups (i.e., they are the same size, shape, and color)
  • Measuring cups
  • A variety of liquids for the test
  • Paper for writing down observations
  • Measure the same amount of ice and place it in each cup.
  • M easure equal amounts of each liquid and place them in the cups: try to complete this part quickly so that the ice in each cup is in liquid for as close the same amount of time as possible.
  • Set up your cups in a place that is easy for your child to watch and observe.
  • Ask them to check in at regular intervals (every 15 minutes, every hour) and record or talk to you about their observations.

Other potential experimental examples:

  • Using different liquids to test if they affect melting time;
  • Using the same liquid and placing ice in different locations to test what conditions throughout your home affect melting;
  • Test if different amounts of ice melt at different rates;
  • Test if different kinds of cups change melting time.

There are endless possibilities for you to come up with new ways to complete these simple experiments. You get the idea. Explore more!

18. Breathing Leaves

Science experiments don’t get much more simple than this one!  It’s effective though and kids will enjoy watching their leaf ‘breathe’. Learning about plant science is often tricky because it can seem a bit abstract. This experiment allows kids to see the process of plants making oxygen right before their eyes!

A question to ask beforehand:

  • What do you think will happen if we leave it for a few hours?
  • A fresh leaf from a tree
  • A bowl of water
  • Pluck a fresh leaf from a tree and place it in a bowl of water.
  • Use a rock to weigh it down and leave the experiment out in the sun.
  • Have your kids predict what they think they will see when they come back in a few hours (they can write their prediction down or draw a diagram if that’s more their style).
  • After a few hours, your kids will see lots of tiny little bubbles on the edge of the leaf and in the glass bowl of water (use a magnifying glass to get a closer look if you have one).

So, what’s happening here? Leaves take in carbon dioxide and convert it to oxygen during photosynthesis. The bubbles you can see are the leaf releasing the oxygen it’s created. You could explain to your kids how trees and plants make the oxygen we need to breathe. Kids Fun Science explains this experiment in more detail and suggests taking it further by leaving the plant for a longer period of time (do you see more or fewer bubbles?) or placing a leaf in a dark area to see what difference that makes!

19. How Does Sunscreen Work?

Scientific Method - How Does Sunscreen Work?

If there’s one thing I know, it’s that kids hate wearing sunscreen! Trying to get it on them is like wrestling a crocodile. Maybe if they knew how sunscreen worked they’d understand how important it is to wear it when they’re out in the sun (and be slightly more cooperative when we’re lathering it over their little faces). This is a simple experiment that shows kids the difference wearing sunscreen will make to their skin.

  • What do they observe when they come back?
  • Why do they think one side faded and the other not?
  • A piece of colored cardboard (a dark color would be best)
  • Your usual bottle of sunscreen
  • Have your kids smear the sunscreen over one part of the cardboard and leave the other part clear.
  • Kids can then predict what they think will happen when they return to the experiment after a few hours.
  • Talk to them about how the sun’s UV radiation is absorbed by the sunscreen so it can’t get through to damage the cardboard.

You could even take it further by trying different kinds of sunscreen or leaving your cardboard out during different times of the day.

20. Make A Rubber Egg

Imagine a world in which eggs can be used like bouncy balls. Well, with a couple of home supplies and a little bit of science, you can live in that world. Your child will be dazzled as they remove eggshells from eggs while leaving the insides intact. 

  • Is vinegar an acid or a base?
  • Is there another substance that could do this?
  • Simply leave the egg in the vinegar for a few hours and wait to see what happens. Because of the transformative nature of this experiment, it lends itself to science journaling. 
  • Consider having your kiddos draw before and after pictures of the eggs in order to track their journeys. 

21. Flying Tea Bags

Flying Tea Bags is an easy kitchen science experiment

Nothing will get your kids’ attention faster than telling them that you are going to spend some time creating something that will fly. However, because this experiment will involve fire, please ensure that you select a time in which you will be able to provide ample adult supervision. 

  • How do we stay safe with fire?
  • How do we make sure we don’t damage the surface we are working on?
  • Why do you think the tea bag will fly?
  • Single Serving Tea Bags
  • A Small Bowl
  • A Non-Flammable Work Surface
  • First, open the tea bags and unfold them. 
  • Empty the leaves from the bag. 
  • Stand the tea bags up on your surface and light the top of each bag on fire. 

As they begin to burn, they will float into the sky! 

22. Make Wax Paper Lanterns

Your children will love the chance to display their fantastic art skills by creating these paper lanterns. If you want to add a culture lesson, have your children research German’s St. Martin’s Day and learn about why children parade through the streets with lanterns. We promise there’s a good moral story involved here! 

  • When could we use lanterns?
  • What safety considerations do we need to use in this project?
  • Why can we see the light through the wax paper?
  • Popsicle Sticks
  • To begin, tear a ten-inch piece of wax paper off of the roll and cut it in half. 
  • After that, fold each piece in half. 
  • Allow your child to color their image on top of the wax paper. (This is a great place for an impromptu lesson in color mixing). 
  • Fold the wax paper and iron it (consider something in between the crayon mess and the iron you use on your clothes). 
  • Finally, glue the craft sticks into squares, add the wax paper, and turn it into a cube.

Voila, you’ve created your own lantern!

23. Create an Insect Habitat

Alright, this one isn’t for the faint of heart. Draw up your courage and send your child into the backyard to collect all of the creepy crawlies they’d like to.

Create an Insect Habitat at Home

Now you have a home for them. Better yet, you can keep your child entertained for hours as they track the growth of their bug friends.

  • What do bugs need to survive?
  • What do bugs eat?
  • What is the difference between a need and a want?
  • Imagination
  • Find something that you’re willing to sacrifice to the bugs in order to create a habitat for them – we recommend a shadowbox so that your child can see inside, but a cardboard box will do just fine as well. 
  • Ensure that there is breathing room for the bugs. 
  • Create a habitat with sticks, bark, small rocks, dried leaves, and whatever else you can find.
  • If you’re willing to hang onto the habitat long enough, use it as an opportunity to talk about decomposition as the bugs begin to break down the twigs.

Long-Term Science Experiments at Home

24. crystal kingdom.

This is the oldest trick in the book, but it’s popular because it’s so effective, fun, and has great results. The only drawback to most crystal-growing recipes is that they take ages to grow, and to be quite honest this one is no exception. In fact, these crystals will take several days to grow but the end result is worth it. The reason is that this experiment involves growing a whole landscape of beautifully colored salt and bluing crystals. Here’s a video for visual reference: 

A few things to keep in mind: Allow for plenty of air circulation, preferably inside rather than outside. Ammonia is not necessary but does help in the process.

  • What will happen when you add ammonia?
  • Why does more salt and less liquid create faster crystallization?
  • What part does the bluing solution have in crystal growing?

(Answers can be found here )

  • Two bottles of bluing solution
  • Large tray/cookie sheets with sides
  • Measuring cup
  • Liquid watercolors
  • Eye droppers
  • Cut sponges into large pieces. Spread them out on the tray.
  • Measure out 1 cup of each of salt, water, and bluing and then gently mix together.
  • Evenly coat or sprinkle the mix over the sponges.
  • Add 1 cup of ammonia to the sponges.
  • Coat an extra 1 cup of salt on to the sponges.
  • By now you’ll see some crystals growing . Sprinkle the magic mix again: 1 cup each of salt, water, and bluing. You can pour the ingredients onto the tray instead of on top of the crystals to keep them from breaking. Don’t worry, more will grow!
  • Take an eyedropper, and drop a tablespoon of each liquid watercolor (undiluted) in different patterns over the sponges and crystals.
  • Take note of your garden and what the crystal formations look like. You can make a sketch in your notebook as a before and after. Ask questions and observe!
  • Observe how the crystals are bigger than before, and notice the colors aren’t as vibrant. Compare the differences in shapes, sizes, and colors.
  • If you want more crystals to grow, add a little more water, bluing, and salt.

25. Blow up a Balloon with Yeast

We are surrounded by science in action, but sometimes it is really difficult to see what is happening, especially when it is on a small-scale. When we make bread, yeast ‘eats’ the sugars in the food and creates CO2, giving bread its airy texture. This experiment lets you both visualize what happens when yeast consumes sugar and is a great set-up for an experiment that can be observed throughout the day.

Depending on your supplies and time, you could start with a demonstration and use that to think of other tests, or you could set up several parallel tests at the same time.

  • How quickly does the balloon filled with air?
  • When does it stop filling (at some point the yeast will run out of food and will stop making gas)?
  • Does the starting temperature affect the experiment?
  • Does the balloon fill faster in different places in your home (try especially for different air-temperatures, you could include an outside location)?
  • Some balloons
  • Blow up the balloon a few times before starting so that it’s loosened up a bit.
  • Fill the bottle with about 1 inch of warm water (heat is required to activate the yeast, but you could experiment with different temperatures), add the yeast and swirl to dissolve.
  • Add the sugar and swirl more.
  • Place the balloon over the opening to the bottle and wait. You should expect to see the balloon begin to inflate after around 20 minutes.
  • Continue checking and observing how much the balloon inflates throughout the day.

More example experimental setups include:

  • Do different temperatures – either with the water you start with or the air the yeast lives in – affect how quickly the balloon blows-up?
  • Does using 2x the yeast result in a balloon that is 2x bigger, or blows-up 2x faster?
  • Do different types of sugar (e.g., white sugar, honey, syrup, flour) affect how quickly the balloon blows up or how big it gets?

A sk your child to think of new experiments (you could prompt with some of the examples above, or ideas from this post ). 

26. Seed Germination

A really simple but fun multi-day experiment is germinating seeds under different conditions. This means finding some quick-sprouting seeds such as beans and putting them in different conditions to see how that affects germination (sprouting leaves and roots) and growth.

Seed Germination is an easy science experiment for kids

I love using seed experiments because they are inexpensive, simple, and leave a ton of room for creating your own unique experiment.

  • Which seed will sprout fastest?
  • Seeds (Beans, radishes, squashes, and many flowers sprout quickly from large seeds, making them good choices.)
  • Small pots or paper cups
  • Potting soil
  • Cloth or paper towel
  • Somewhere with good light
  • To get started, you’ll need some seeds – feel free to choose something you already have, if you’re a gardener you might have some seeds ready for the coming season and could spare a few – or find something online or at your local nursery.
  • Use small pots or paper cups and fill each with your growth material (we recommend a minimum of 3 for a useful comparison).
  • Fill one with potting soil, one with sand, and one with a cloth or paper towel.
  • Place them somewhere with good light, and add water.
  • Ask your child to predict which seed will sprout fastest, and make observations every day. If possible, make them around the same time each day.
  • Once you see growth, you can ask your child what they think caused any differences, and you can use that as a jumping-off point for more experiments

Additionally, you could:

  • Use one type of seed and different types of growth media: soil, paper towel, gravel, sand, water, etc.
  • You could use different seeds (beans, flowers, grass, herbs) and grow them under the same conditions (soil, water, sun exposure) to see how different plants grow differently.
  • You could see how different light conditions (by a window, in the basement, in a bright room away from a window, etc.) affect germination.

You could also extend each experiment by simply continuing to grow each seed to learn whether the different germination time affects long-term growth (you may want to re-pot everything in the soil for this to be effective, depending on the specifics of your initial experiment).

27. Colored Celery

Colored Celery is a simple science experiment for kids

It’s hard to imagine plants having little capillaries inside them that transport water and nutrients, but this experiment shows that in action. It’s easy to set up, but you’ll have to wait at least a day to see some results. Your kids will be able to see how transpiration takes place and plants absorb water from the soil all the way up into their leaves.

  • A few stalks of celery (celery works best for this because it’s a bit more visible, but you could also use flower stems)
  • Different food coloring
  • Place each stalk in a cup of colored water and make your predictions about what will happen.
  • After a day or so you’ll see the celery leaves becoming the color of the water they’re standing in.
  • Have your kids describe their observations (they can write down what they see or draw it if they prefer).
  • If you look at the base of the stem you’ll also see tiny little holes that the colored water is traveling through.

When you’re done with the experiment, make sure you snap the celery and look inside – you should be able to see the capillaries in action. For more ideas, Little Bins for Little Hands has got some great hints and tips for this experiment.

28. Moldy Bread

This experiment is an oldie, but a goodie! Kids love looking at disgusting things and this one will certainly come up with the goods. Not only will kids learn about how mold grows, but they might also take on some lessons about the importance of washing their hands!

You might want to check out the results of this experiment at Science Alert before you start to see if your stomach is up to it.

  • A few slices of bread
  • Some ziplock bags
  • Sticky little hands. 
  • Get a few slices of bread and lay them out on your kitchen bench.
  • Have your kids touch one piece of bread with dirty, unwashed hands.
  • They can wash their hands with soap and water and touch another slice, then do the same using hand sanitizer.
  • Leave one piece of bread untouched.
  • Place them all in clear, labeled ziplock bags and predict which one will grow the most mold.
  • Leave your bread slices for at least a week (it may take a bit longer, depending on the conditions where you live) and get the kids to record their observations.

You can also try wiping your bread slices on other surfaces to see what moldy results you get (their laptop or tablet is a great place to start)!

29. Sprouting Beans

Sprouting Beans experiment

Give your household a real survivalist feel by beginning an indoor garden. We recommend planting your beans in a clear cup so that your children can be privy to all of the processes during the plant’s journey.

  • How does a plant grow?
  • What does germination mean?
  • What is in season to grow in our area now?
  • Unprocessed Beans
  • If you’d like your child to see every step of the process, consider placing the beans inside of a damp paper towel inside of a ziplock. 
  • You can wait, see the germinated seed together, and then plant it inside of a small cup.
  • Once inside the cup, watch it grow.

Extend your work by planting various beans and altering the growth conditions in order see what makes your beans grow best! 

30. Begin Composting

Begin your “go green” resolutions by teaching your child the value of composting! Best of all, once the science experiment is done, your family will have a recycling process that will last your entire lifetimes. 

  • Why is composting important?
  • How else can our household go green?
  • Why do we need a foundation layer for compost?
  • Compost Bin
  • Organic Material
  • First, create a compost bin. You can purchase one or build one out of wood. 
  • To begin your composting, you’ll need even amounts of brown materials (think shredded paper, dryer lint, etc.) and green materials (think fruit and vegetable waste, lawn clippings, etc.). 
  • If you’re really feeling fancy, throw some earthworms in there.

For days to come, your family will be able to discuss what can and cannot be broken down by the decomposers inside of the compost bin. Never-ending science! 

31. Turn Grapes Into Raisins

Turn Grapes Into Raisins for an at-home science experiment

Your kids may or may not eat raising – but we can guarantee you, they’ve likely never considered the option of creating their own! 

  • What other snacks can we make with science?
  • Should we ever eat our experiments?
  • How does this work?
  • For this experiment, you’ll need grapes. (Really, that’s it!) 

Leave your grapes somewhere where they will not be disturbed and use this as an opportunity for your children to journal the changes in the grapes from day to day. Believe it or not, this type of sequential journaling is a valuable literacy skill! 

32. DIY Science Experiment

The best science experiment your child can engage in is the one they create themselves! Begin brainstorming a list of questions and let the world be their oyster as they plan and carry out their own experiments. Some of our favorite brainstorming questions, from Scholastic’s Science-Fair Project Guide, are listed below:

  • What is the effect of toothpaste brand on teeth-cleaning power?
  • What brand of trash bag can withstand the most weight before ripping?
  • How does the type of material affect how long a shirt takes to dry?

Written by Miranda Altice, Kaitlin Anselmo, Mark Coster, Allison Ebbets, and Jodie Magrath.

science experiments decorations

Mark is the driving force behind STEM Geek. With 20 years of experience in chemistry education and research, and 3 willing children as guinea pigs, Mark has a passion for inspiring kids and adults to combine fun and learning with STEM Toys!

Editor’s Picks

Best LEGO Star Wars Sets

7 Best LEGO Star Wars Sets | Our Top Picks of All Time!

Best LEGO Creator Sets - Take Your Pick!

Best LEGO Creator Sets – Take Your Pick From These 7 Gems!

Man In Shorts Using A Metal Detector

How to Use a Metal Detector: 8 Essential Tips to Get the Most of It

A Person Holding A Yellow Metal Detector At The Beach

Best Metal Detector for Kids: 5 Top Picks (+ Buying Guide)

Best 2 Player Cooperative Board Games

Best 2+ Player Cooperative Board Games (Top 6 in 2024)

MEL Chemistry Review - monthly science subscription

MEL Chemistry Review: Is Your Child the Next Bill Nye?

Get Your ALL ACCESS Shop Pass here →

Little bins for little hands logo

50 Fun Kids Science Experiments

Pinterest Hidden Image

Science doesn’t need to be complicated. These easy science experiments below are awesome for kids! They are visually stimulating, hands-on, and sensory-rich, making them fun to do and perfect for teaching simple science concepts at home or in the classroom.

science experiments decorations

Top 10 Science Experiments

Click on the titles below for the full supplies list and easy step-by-step instructions. Have fun trying these experiments at home or in the classroom, or even use them for your next science fair project!

baking soda and vinegar balloon experiment

Baking Soda Balloon Experiment

Can you make a balloon inflate on its own? Grab a few basic kitchen ingredients and test them out! Try amazing chemistry for kids at your fingertips.

artificial rainbow

Rainbow In A Jar

Enjoy learning about the basics of color mixing up to the density of liquids with this simple water density experiment . There are even more ways to explore rainbows here with walking water, prisms, and more.

science experiments decorations

This color-changing magic milk experiment will explode your dish with color. Add dish soap and food coloring to milk for cool chemistry!

science experiments decorations

Seed Germination Experiment

Not all kids’ science experiments involve chemical reactions. Watch how a seed grows , which provides a window into the amazing field of biology .

science experiments decorations

Egg Vinegar Experiment

One of our favorite science experiments is a naked egg or rubber egg experiment . Can you make your egg bounce? What happened to the shell?

science experiments decorations

Dancing Corn

Find out how to make corn dance with this easy experiment. Also, check out our dancing raisins and dancing cranberries.

science experiments decorations

Grow Crystals

Growing borax crystals is easy and a great way to learn about solutions. You could also grow sugar crystals , eggshell geodes , or salt crystals .

science experiments decorations

Lava Lamp Experiment

It is great for learning about what happens when you mix oil and water. a homemade lava lamp is a cool science experiment kids will want to do repeatedly!

science experiments decorations

Skittles Experiment

Who doesn’t like doing science with candy? Try this classic Skittles science experiment and explore why the colors don’t mix when added to water.

science experiments decorations

Lemon Volcano

Watch your kids’ faces light up, and their eyes widen when you test out cool chemistry with a lemon volcano using common household items, baking soda, and vinegar.

DIY popsicle stick catapult Inexpensive STEM activity

Bonus! Popsicle Stick Catapult

Kid tested, STEM approved! Making a popsicle stick catapult is a fantastic way to dive into hands-on physics and engineering.

Grab the handy Top 10 Science Experiments list here!

science experiments decorations

Free Science Ideas Guide

Grab this free science experiments challenge calendar and have fun with science right away. Use the clickable links to see how to set up each science project.

science experiments decorations

Get Started With A Science Fair Project

💡Want to turn one of these fun and easy science experiments into a science fair project? Then, you will want to check out these helpful resources.

  • Easy Science Fair Projects
  • Science Project Tips From A Teacher
  • Science Fair Board Ideas

Easy Science Experiments For Kids

science experiments decorations

Science Experiments By Topic

Are you looking for a specific topic? Check out these additional resources below. Each topic includes easy-to-understand information, everyday examples, and additional hands-on activities and experiments.

  • Chemistry Experiments
  • Physics Experiments
  • Chemical Reaction Experiments
  • Candy Experiments
  • Plant Experiments
  • Kitchen Science
  • Water Experiments
  • Baking Soda Experiments
  • States Of Matter Experiments
  • Physical Change Experiments
  • Chemical Change Experiments
  • Surface Tension Experiments
  • Capillary Action Experiments
  • Weather Science Projects
  • Geology Science Projects
  • Space Activities
  • Simple Machines
  • Static Electricity
  • Potential and Kinetic Energy
  • Gravity Experiments
  • Magnet Activities
  • Light Experiments

Science Experiments By Season

  • Spring Science
  • Summer Science Experiments
  • Fall Science Experiments
  • Winter Science Experiments

Science Experiments by Age Group

While many experiments can be performed by various age groups, the best science experiments for specific age groups are listed below.

  • Science for Toddlers
  • Science for Preschoolers
  • Science for Kindergarten
  • Elementary Science by Season
  • Science for 1st Grade
  • Science for 2nd Grade
  • Science for 3rd Grade
  • Science for 4th Grade
  • S cience for 5th Grade
  • Science for 6th Grade
  • Science for Middle School

science experiments decorations

How To Teach Science

Kids are curious and always looking to explore, discover, check out, and experiment to discover why things do what they do, move as they move, or change as they change! My son is now 13, and we started with simple science activities around three years of age with simple baking soda science.

Here are great tips for making science experiments enjoyable at home or in the classroom.

Safety first: Always prioritize safety. Use kid-friendly materials, supervise the experiments, and handle potentially hazardous substances yourself.

Start with simple experiments: Begin with basic experiments (find tons below) that require minimal setup and materials, gradually increasing complexity as kids gain confidence.

Use everyday items: Utilize common household items like vinegar and baking soda , food coloring, or balloons to make the experiments accessible and cost-effective.

Hands-on approach: Encourage kids to actively participate in the experiments rather than just observing. Let them touch, mix, and check out reactions up close.

Make predictions: Ask kids to predict the outcome before starting an experiment. This stimulates critical thinking and introduces the concept of hypothesis and the scientific method.

Record observations: Have a science journal or notebook where kids can record their observations, draw pictures, and write down their thoughts. Learn more about observing in science. We also have many printable science worksheets .

Theme-based experiments: Organize experiments around a theme, such as water , air , magnets , or plants . Even holidays and seasons make fun themes!

Kitchen science : Perform experiments in the kitchen, such as making ice cream using salt and ice or learning about density by layering different liquids.

Create a science lab: Set up a dedicated space for science experiments, and let kids decorate it with science-themed posters and drawings.

Outdoor experiments: Take some experiments outside to explore nature, study bugs, or learn about plants and soil.

DIY science kits: Prepare science experiment kits with labeled containers and ingredients, making it easy for kids to conduct experiments independently. Check out our DIY science list and STEM kits.

Make it a group effort: Group experiments can be more fun, allowing kids to learn together and share their excitement. Most of our science activities are classroom friendly!

Science shows or documentaries: Watch age-appropriate science shows or documentaries to introduce kids to scientific concepts entertainingly. Hello Bill Nye and the Magic Schoolbus! You can also check out National Geographic, the Discovery Channel, and NASA!

Ask open-ended questions: Encourage critical thinking by asking open-ended questions that prompt kids to think deeper about what they are experiencing.

Celebrate successes: Praise kids for their efforts and discoveries, no matter how small, to foster a positive attitude towards science and learning.

What is the Scientific Method for Kids?

The scientific method is a way scientists figure out how things work. First, they ask a question about something they want to know. Then, they research to learn what’s already known about it. After that, they make a prediction called a hypothesis.

Next comes the fun part – they test their hypothesis by doing experiments. They carefully observe what happens during the experiments and write down all the details. Learn more about variables in experiments here.

Once they finish their experiments, they look at the results and decide if their hypothesis is right or wrong. If it’s wrong, they devise a new hypothesis and try again. If it’s right, they share their findings with others. That’s how scientists learn new things and make our world better!

Go ahead and introduce the scientific method and get kids started recording their observations and making conclusions. Read more about the scientific method for kids .

Engineering and STEM Projects For Kids

STEM activities include science, technology, engineering, and mathematics. In addition to our kids’ science experiments, we have lots of fun STEM activities for you to try. Check out these STEM ideas below.

  • Building Activities
  • Self-Propelling Car Projects
  • Engineering Projects For Kids
  • What Is Engineering For Kids?
  • Lego STEM Ideas
  • LEGO Engineering Activities
  • STEM Activities For Toddlers
  • STEM Worksheets
  • Easy STEM Activities For Elementary
  • Quick STEM Challenges
  • Easy STEM Activities With Paper  

Printable Science Projects For Kids

If you’re looking to grab all of our printable science projects in one convenient place plus exclusive worksheets and bonuses like a STEAM Project pack, our Science Project Pack is what you need! Over 300+ Pages!

  • 90+ classic science activities  with journal pages, supply lists, set up and process, and science information.  NEW! Activity-specific observation pages!
  • Best science practices posters  and our original science method process folders for extra alternatives!
  • Be a Collector activities pack  introduces kids to the world of making collections through the eyes of a scientist. What will they collect first?
  • Know the Words Science vocabulary pack  includes flashcards, crosswords, and word searches that illuminate keywords in the experiments!
  • My science journal writing prompts  explore what it means to be a scientist!!
  • Bonus STEAM Project Pack:  Art meets science with doable projects!
  • Bonus Quick Grab Packs for Biology, Earth Science, Chemistry, and Physics

science experiments decorations

Subscribe to receive a free 5-Day STEM Challenge Guide

~ projects to try now ~.

science experiments decorations

Education Corner

30 Best Science Experiments & Projects for High School

Photo of author

Welcome to our round-up of top science fair projects and science experiments tailored specifically for curious high school students.

Science fair is not just about the glitz and glamour of a first-place trophy; it’s about the passion, the inquiry, and the insatiable curiosity that drive every scientist, young and old. Hopefully, our curated list of the best hands-on science fair projects for high school students will ignite that curiosity in you.

Each project on this list offers a unique opportunity to dive deep into scientific inquiry and present findings with both clarity and flair.

Let’s dive in and make learning an unforgettable adventure!

1. Burn Calories

Burn Calories

Don’t miss this opportunity to unravel the mysteries of energy transformation and uncover the scientific secrets hidden in the simplest of substances!

Learn more: Science Buddies

2. Extracting DNA from Strawberry

Extracting DNA from Strawberry

By following a series of simple yet insightful steps, students will witness the magical moment of DNA extraction, fostering a deeper appreciation for the fundamental building blocks of life.

Learn more: Extracting DNA from Strawberry

3. Build a Simple DIY Newton’s Cradle

As students assemble the materials and witness the rhythmic dance of swinging spheres, they will witness the scientific principles they’ve learned in the classroom come to life before their eyes.

4. Make a Monster Dry Ice Bubbles

Make a Monster Dry Ice Bubbles

Unleash your inner mad scientist and learn how to make Monster Dry Ice Bubbles with this high school science experiment!

Get ready to be captivated as you create giant, spooky bubbles that dance and swirl with the mysterious power of dry ice.

Learn more: Wonder How To

5. Soil Erosion Experiment

Soil Erosion Experiment

As stewards of our environment, it’s crucial to comprehend the impact of natural processes like soil erosion.

Through this experiment, students will gain a deeper appreciation for the significance of soil conservation and sustainable land management practices.

Learn more: Life is a Garden

6. Candle Carousel

Candle Carousel

This experiment combines the wonders of physics with the art of crafting, making it an enriching experience that ignites curiosity and fosters a deeper appreciation for the elegant dance of energy in our world.

7. Find Out if Water Conducts Electricity

Find Out if Water Conducts Electricity

In this captivating activity, students will explore the conductive properties of water and unlock the secrets of how electrical currents flow through different substances.

Learn more: Rookie Parenting

8. Roller Coaster Stem Experiment

Roller Coaster Stem Experiment

By experimenting with various designs and track configurations, students will refine their problem-solving skills and gain valuable insights into the practical applications of physics and engineering.

Learn more: STEM Project

9. Lemon Battery

Lemon Battery

Engaging in this experiment not only teaches the basics of electrical circuits but also sparks curiosity about the natural world and the science behind it.

Learn more: Coffee Cups and Crayons

10. Watering Plants Using Different Liquids

Watering plants using different liquids

Discover the wonders of plant hydration with the intriguing high school science experiment – “Watering Plants Using Different Liquids.” In this captivating project, students explore how various liquids impact plant growth and health.

Learn more: Lemon Lime Adventures

11. Measure Electrolytes Found in Sports Drinks

By conducting a series of tests and analyses, students will quantify the electrolyte content present in various sports drinks.

12. Relight the Flame Without Directly Touching It

Relight the Flame Without Touching It

This captivating project challenges students to learn about the intriguing properties of heat transfer and combustion.

By exploring different methods to reignite a candle flame without physical contact, students will uncover the secrets of heat conduction, convection, and radiation.

Learn more: Stevespangler

13. Conduct Fingerprint Analysis

This captivating project immerses students in the intriguing world of crime scene investigations, where they will uncover the uniqueness of fingerprints and their role in forensic science.

14. Separate Water Into Hydrogen And Oxygen Using Electrolysis

Separate Water Into Hydrogen And Oxygen Using Electrolysis

This electrifying project allows students to explore electrolysis and the decomposition of water into its elemental components.

Learn more: Navigating by Joy

15. Simple Color Detection Circuit 

This experiment not only introduces fundamental concepts in electronics and circuitry but also opens up endless possibilities for real-life applications, from automated sorting systems to color-sensitive devices.

16. Carbon Sugar Snake

Carbon Sugar Snake

This enchanting project allows students to witness a dazzling display of science as they combine common household ingredients to create a dark, coiling “snake” made of carbon.

Learn more: Kiwi Co

17. Build a Hydraulic Elevator

Build a Hydraulic Elevator

This captivating project invites students to learn about engineering and fluid mechanics. By constructing a working model of a hydraulic elevator, students will explore the principles of Pascal’s law and the fascinating concept of fluid pressure.

Learn more: Teach Beside Me

18. Brew up Some Root Beer

Brew up Some Root Beer

This enticing project invites students to explore the fascinating world of chemistry and fermentation while creating their own delicious and bubbly concoction.

Learn more: Home School Creations

19. Extracting Bismuth From Pepto-Bismol Tablets

Extracting Bismuth From Pepto-Bismol Tablets

This hands-on experiment not only sheds light on the principles of chemistry and lab techniques but also highlights the real-world applications of bismuth in medicine and various industries.

Learn more: Popscie

20. Solar-Powered Water Desalination

Solar-Powered Water Desalination

By designing and building a solar-powered water desalination system, students will learn how to harness the sun’s energy to purify saltwater and make it safe for consumption.

21. Applying Hooke’s Law: Make Your Own Spring Scale

science experiments decorations

By designing and constructing their very own spring scale, students will uncover the principles of Hooke’s Law and the relationship between force and displacement in a spring system.

22. Homemade Hand Warmer

Homemade Hand Warmer

By creating their own hand warmers using safe and easily accessible materials, students will witness the magic of heat generation through chemical processes.

Learn more: Steve Spangler

23. Explore the Concept of Symbiosis Involving Nitrogen-Fixing Bacteria.

Delve into the concept of symbiosis involving nitrogen-fixing bacteria.

By investigating how certain plants form a mutually beneficial bond with these bacteria, students will gain insights into the essential role of nitrogen fixation in the ecosystem.

Learn more: Education.com

24. Center of Gravity Experiment

Center of Gravity Experiment

This fascinating project invites students to explore the concept of the center of gravity and its role in determining stability.

25. Power up Homemade Batteries

Power up Homemade Batteries

This captivating project invites students to learn about electrochemistry and energy generation.

Learn more: 123 Homeschool

26. Film Canister Explosions

Film Canister Explosions

Prepare for a blast of excitement and chemistry with the high school science experiment – “Film Canister Explosions!” This project teaches students about chemical reactions and pressure build-up.

27. Investigating Osmosis with Potato Slices

This hands-on experiment not only provides a practical understanding of osmosis but also highlights its relevance in everyday life, from understanding plant hydration to food preservation techniques.

28. Make Homemade Fly Trap

This captivating “Make Homemade Fly Trap!” project invites students to explore the principles of pest control and observe the behavior of flies.

29. Hydroponics: Gardening Without Soil

This exciting project invites students to explore innovative agricultural practices that harness water and nutrient solutions to grow plants.

By setting up their hydroponic system and nurturing plants through this method, students will witness the fascinating dynamics of root development and nutrient absorption.

30. Clothespin Airplane

Clothespin Airplane

As they test and modify their creations, students will learn about the principles of lift, thrust, and drag, gaining a deeper understanding of how these forces come together to keep airplanes soaring through the skies.

Learn more: Steamsational

Similar Posts:

  • 68 Best Chemistry Experiments: Learn About Chemical Reactions
  • 37 Water Science Experiments: Fun & Easy
  • Top 100 Fine Motor Skills Activities for Toddlers and Preschoolers

Leave a Comment Cancel reply

Save my name and email in this browser for the next time I comment.

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

37 Cool Science Experiments for Kids to Do at Home

author image

General Education

feature_scienceexperiment

Are you looking for cool science experiments for kids at home or for class? We've got you covered! We've compiled a list of 37 of the best science experiments for kids that cover areas of science ranging from outer space to dinosaurs to chemical reactions. By doing these easy science experiments, kids will make their own blubber and see how polar bears stay warm, make a rain cloud in a jar to observe how weather changes, create a potato battery that'll really power a lightbulb, and more.

Below are 37 of the best science projects for kids to try. For each one we include a description of the experiment, which area(s) of science it teaches kids about, how difficult it is (easy/medium/hard), how messy it is (low/medium/high), and the materials you need to do the project. Note that experiments labelled "hard" are definitely still doable; they just require more materials or time than most of these other science experiments for kids.

#1: Insect Hotels

  • Teaches Kids About: Zoology
  • Difficulty Level: Medium
  • Messiness Level: Medium

Insect hotels can be as simple (just a few sticks wrapped in a bundle) or as elaborate as you'd like, and they're a great way for kids to get creative making the hotel and then get rewarded by seeing who has moved into the home they built. After creating a hotel with hiding places for bugs, place it outside (near a garden is often a good spot), wait a few days, then check it to see who has occupied the "rooms." You can also use a bug ID book or app to try and identify the visitors.

  • Materials Needed
  • Shadow box or other box with multiple compartments
  • Hot glue gun with glue
  • Sticks, bark, small rocks, dried leaves, bits of yarn/wool, etc.

insect hotel

#2: DIY Lava Lamp

  • Teaches Kids About: Chemical reactions
  • Difficulty Level: Easy

In this quick and fun science experiment, kids will mix water, oil, food coloring, and antacid tablets to create their own (temporary) lava lamp . Oil and water don't mix easily, and the antacid tablets will cause the oil to form little globules that are dyed by the food coloring. Just add the ingredients together and you'll end up with a homemade lava lamp!

  • Vegetable oil
  • Food coloring
  • Antacid tablets

#3: Magnetic Slime

  • Teaches Kids About: Magnets
  • Messiness Level: High (The slime is black and will slightly dye your fingers when you play with it, but it washes off easily.)

A step up from silly putty and Play-Doh, magnetic slime is fun to play with but also teaches kids about magnets and how they attract and repel each other. Some of the ingredients you aren't likely to have around the house, but they can all be purchased online. After mixing the ingredients together, you can use the neodymium magnet (regular magnets won't be strong enough) to make the magnetic slime move without touching it!

  • Liquid starch
  • Adhesive glue
  • Iron oxide powder
  • Neodymium (rare earth) magnet

#4: Baking Soda Volcanoes

  • Teaches Kids About: Chemical reactions, earth science
  • Difficulty Level: Easy-medium
  • Messiness Level: High

Baking soda volcanoes are one of the classic science projects for kids, and they're also one of the most popular. It's hard to top the excitement of a volcano erupting inside your home. This experiment can also be as simple or in-depth as you like. For the eruption, all you need is baking soda and vinegar (dishwashing detergent adds some extra power to the eruption), but you can make the "volcano" as elaborate and lifelike as you wish.

  • Baking soda
  • Dishwashing detergent
  • Large mason jar or soda bottle
  • Playdough or aluminum foil to make the "volcano"
  • Additional items to place around the volcano (optional)
  • Food coloring (optional)

#5: Tornado in a Jar

  • Teaches Kids About: Weather
  • Messiness Level: Low

This is one of the quick and easy and science experiments for kids to teach them about weather. It only takes about five minutes and a few materials to set up, but once you have it ready you and your kids can create your own miniature tornado whose vortex you can see and the strength of which you can change depending on how quickly you swirl the jar.

  • Glitter (optional)

#6: Colored Celery Experiment

  • Teaches Kids About: Plants

This celery science experiment is another classic science experiment that parents and teachers like because it's easy to do and gives kids a great visual understanding of how transpiration works and how plants get water and nutrients. Just place celery stalks in cups of colored water, wait at least a day, and you'll see the celery leaves take on the color of the water. This happens because celery stalks (like other plants) contain small capillaries that they use to transport water and nutrients throughout the plant.

  • Celery stalks (can also use white flowers or pale-colored cabbage)

#7: Rain Cloud in a Jar

This experiment teaches kids about weather and lets them learn how clouds form by making their own rain cloud . This is definitely a science project that requires adult supervision since it uses boiling water as one of the ingredients, but once you pour the water into a glass jar, the experiment is fast and easy, and you'll be rewarded with a little cloud forming in the jar due to condensation.

  • Glass jar with a lid
  • Boiling water
  • Aerosol hairspray

body_rockcandy

#8: Edible Rock Candy

  • Teaches Kids About: Crystal formation

It takes about a week for the crystals of this rock candy experiment to form, but once they have you'll be able to eat the results! After creating a sugar solution, you'll fill jars with it and dangle strings in them that'll slowly become covered with the crystals. This experiment involves heating and pouring boiling water, so adult supervision is necessary, once that step is complete, even very young kids will be excited to watch crystals slowly form.

  • Large saucepan
  • Clothespins
  • String or small skewers
  • Candy flavoring (optional)

#9: Water Xylophone

  • Teaches Kids About: Sound waves

With just some basic materials you can create your own musical instrument to teach kids about sound waves. In this water xylophone experiment , you'll fill glass jars with varying levels of water. Once they're all lined up, kids can hit the sides with wooden sticks and see how the itch differs depending on how much water is in the jar (more water=lower pitch, less water=higher pitch). This is because sound waves travel differently depending on how full the jars are with water.

  • Wooden sticks/skewers

#10: Blood Model in a Jar

  • Teaches Kids About: Human biology

This blood model experiment is a great way to get kids to visual what their blood looks like and how complicated it really is. Each ingredient represents a different component of blood (plasma, platelets, red blood cells, etc.), so you just add a certain amount of each to the jar, swirl it around a bit, and you have a model of what your blood looks like.

  • Empty jar or bottle
  • Red cinnamon candies
  • Marshmallows or dry white lima beans
  • White sprinkles

#11: Potato Battery

  • Teaches Kids About: Electricity
  • Difficulty Level: Hard

Did you know that a simple potato can produce enough energy to keep a light bulb lit for over a month? You can create a simple potato battery to show kids. There are kits that provide all the necessary materials and how to set it up, but if you don't purchase one of these it can be a bit trickier to gather everything you need and assemble it correctly. Once it's set though, you'll have your own farm grown battery!

  • Fresh potato
  • Galvanized nail
  • Copper coin

body_pulley

#12: Homemade Pulley

  • Teaches Kids About: Simple machines

This science activity requires some materials you may not already have, but once you've gotten them, the homemade pulley takes only a few minutes to set up, and you can leave the pulley up for your kids to play with all year round. This pulley is best set up outside, but can also be done indoors.

  • Clothesline
  • 2 clothesline pulleys

#13: Light Refraction

  • Teaches Kids About: Light

This light refraction experiment takes only a few minutes to set up and uses basic materials, but it's a great way to show kids how light travels. You'll draw two arrows on a sticky note, stick it to the wall, then fill a clear water bottle with water. As you move the water bottle in front of the arrows, the arrows will appear to change the direction they're pointing. This is because of the refraction that occurs when light passes through materials like water and plastic.

  • Sticky note
  • Transparent water bottle

#14: Nature Journaling

  • Teaches Kids About: Ecology, scientific observation

A nature journal is a great way to encourage kids to be creative and really pay attention to what's going on around them. All you need is a blank journal (you can buy one or make your own) along with something to write with. Then just go outside and encourage your children to write or draw what they notice. This could include descriptions of animals they see, tracings of leaves, a drawing of a beautiful flower, etc. Encourage your kids to ask questions about what they observe (Why do birds need to build nests? Why is this flower so brightly colored?) and explain to them that scientists collect research by doing exactly what they're doing now.

  • Blank journal or notebook
  • Pens/pencils/crayons/markers
  • Tape or glue for adding items to the journal

#15: DIY Solar Oven

  • Teaches Kids About: Solar energy

This homemade solar oven definitely requires some adult help to set up, but after it's ready you'll have your own mini oven that uses energy from the sun to make s'mores or melt cheese on pizza. While the food is cooking, you can explain to kids how the oven uses the sun's rays to heat the food.

  • Aluminum foil
  • Knife or box cutter
  • Permanent marker
  • Plastic cling wrap
  • Black construction paper

body_polarbears-1

#16: Animal Blubber Simulation

  • Teaches Kids About: Ecology, zoology

If your kids are curious about how animals like polar bears and seals stay warm in polar climates, you can go beyond just explaining it to them; you can actually have them make some of their own blubber and test it out. After you've filled up a large bowl with ice water and let it sit for a few minutes to get really cold, have your kids dip a bare hand in and see how many seconds they can last before their hand gets too cold. Next, coat one of their fingers in shortening and repeat the experiment. Your child will notice that, with the shortening acting like a protective layer of blubber, they don't feel the cold water nearly as much.

  • Bowl of ice water

#17: Static Electricity Butterfly

This experiment is a great way for young kids to learn about static electricity, and it's more fun and visual than just having them rub balloons against their heads. First you'll create a butterfly, using thick paper (such as cardstock) for the body and tissue paper for the wings. Then, blow up the balloon, have the kids rub it against their head for a few seconds, then move the balloon to just above the butterfly's wings. The wings will move towards the balloon due to static electricity, and it'll look like the butterfly is flying.

  • Tissue paper
  • Thick paper
  • Glue stick/glue

#18: Edible Double Helix

  • Teaches Kids About: Genetics

If your kids are learning about genetics, you can do this edible double helix craft to show them how DNA is formed, what its different parts are, and what it looks like. The licorice will form the sides or backbone of the DNA and each color of marshmallow will represent one of the four chemical bases. Kids will be able to see that only certain chemical bases pair with each other.

  • 2 pieces of licorice
  • 12 toothpicks
  • Small marshmallows in 4 colors (9 of each color)
  • 5 paperclips

#19: Leak-Proof Bag

  • Teaches Kids About: Molecules, plastics

This is an easy experiment that'll appeal to kids of a variety of ages. Just take a zip-lock bag, fill it about ⅔ of the way with water, and close the top. Next, poke a few sharp objects (like bamboo skewers or sharp pencils) through one end and out the other. At this point you may want to dangle the bag above your child's head, but no need to worry about spills because the bag won't leak? Why not? It's because the plastic used to make zip-lock bags is made of polymers, or long chains of molecules that'll quickly join back together when they're forced apart.

  • Zip-lock bags
  • Objects with sharp ends (pencils, bamboo skewers, etc.)

body_leaves

#20: How Do Leaves Breathe?

  • Teaches Kids About: Plant science

It takes a few hours to see the results of this leaf experiment , but it couldn't be easier to set up, and kids will love to see a leaf actually "breathing." Just get a large-ish leaf, place it in a bowl (glass works best so you can see everything) filled with water, place a small rock on the leaf to weigh it down, and leave it somewhere sunny. Come back in a few hours and you'll see little bubbles in the water created when the leaf releases the oxygen it created during photosynthesis.

  • Large bowl (preferably glass)
  • Magnifying glass (optional)

#21: Popsicle Stick Catapults

Kids will love shooting pom poms out of these homemade popsicle stick catapults . After assembling the catapults out of popsicle sticks, rubber bands, and plastic spoons, they're ready to launch pom poms or other lightweight objects. To teach kids about simple machines, you can ask them about how they think the catapults work, what they should do to make the pom poms go a farther/shorter distance, and how the catapult could be made more powerful.

  • Popsicle sticks
  • Rubber bands
  • Plastic spoons
  • Paint (optional)

#22: Elephant Toothpaste

You won't want to do this experiment near anything that's difficult to clean (outside may be best), but kids will love seeing this " elephant toothpaste " crazily overflowing the bottle and oozing everywhere. Pour the hydrogen peroxide, food coloring, and dishwashing soap into the bottle, and in the cup mix the yeast packet with some warm water for about 30 seconds. Then, add the yeast mixture to the bottle, stand back, and watch the solution become a massive foamy mixture that pours out of the bottle! The "toothpaste" is formed when the yeast removed the oxygen bubbles from the hydrogen peroxide which created foam. This is an exothermic reaction, and it creates heat as well as foam (you can have kids notice that the bottle became warm as the reaction occurred).

  • Clean 16-oz soda bottle
  • 6% solution of hydrogen peroxide
  • 1 packet of dry yeast
  • Dishwashing soap

#23: How Do Penguins Stay Dry?

Penguins, and many other birds, have special oil-producing glands that coat their feathers with a protective layer that causes water to slide right off them, keeping them warm and dry. You can demonstrate this to kids with this penguin craft by having them color a picture of a penguin with crayons, then spraying the picture with water. The wax from the crayons will have created a protective layer like the oil actual birds coat themselves with, and the paper won't absorb the water.

  • Penguin image (included in link)
  • Spray bottle
  • Blue food coloring (optional)

body_erosion

#24: Rock Weathering Experiment

  • Teaches Kids About: Geology

This mechanical weathering experiment teaches kids why and how rocks break down or erode. Take two pieces of clay, form them into balls, and wrap them in plastic wrap. Then, leave one out while placing the other in the freezer overnight. The next day, unwrap and compare them. You can repeat freezing the one piece of clay every night for several days to see how much more cracked and weathered it gets than the piece of clay that wasn't frozen. It may even begin to crumble. This weathering also happens to rocks when they are subjected to extreme temperatures, and it's one of the causes of erosion.

  • Plastic wrap

#25: Saltwater Density

  • Teaches Kids About: Water density

For this saltwater density experiment , you'll fill four clear glasses with water, then add salt to one glass, sugar to one glass, and baking soda to one glass, leaving one glass with just water. Then, float small plastic pieces or grapes in each of the glasses and observe whether they float or not. Saltwater is denser than freshwater, which means some objects may float in saltwater that would sink in freshwater. You can use this experiment to teach kids about the ocean and other bodies of saltwater, such as the Dead Sea, which is so salty people can easily float on top of it.

  • Four clear glasses
  • Lightweight plastic objects or small grapes

#26: Starburst Rock Cycle

With just a package of Starbursts and a few other materials, you can create models of each of the three rock types: igneous, sedimentary, and metamorphic. Sedimentary "rocks" will be created by pressing thin layers of Starbursts together, metamorphic by heating and pressing Starbursts, and igneous by applying high levels of heat to the Starbursts. Kids will learn how different types of rocks are forms and how the three rock types look different from each other.

  • Toaster oven

#27: Inertia Wagon Experiment

  • Teaches Kids About: Inertia

This simple experiment teaches kids about inertia (as well as the importance of seatbelts!). Take a small wagon, fill it with a tall stack of books, then have one of your children pull it around then stop abruptly. They won't be able to suddenly stop the wagon without the stack of books falling. You can have the kids predict which direction they think the books will fall and explain that this happens because of inertia, or Newton's first law.

  • Stack of books

#28: Dinosaur Tracks

  • Teaches Kids About: Paleontology

How are some dinosaur tracks still visible millions of years later? By mixing together several ingredients, you'll get a claylike mixture you can press your hands/feet or dinosaur models into to make dinosaur track imprints . The mixture will harden and the imprints will remain, showing kids how dinosaur (and early human) tracks can stay in rock for such a long period of time.

  • Used coffee grounds
  • Wooden spoon
  • Rolling pin

#29: Sidewalk Constellations

  • Teaches Kids About: Astronomy

If you do this sidewalk constellation craft , you'll be able to see the Big Dipper and Orion's Belt in the daylight. On the sidewalk, have kids draw the lines of constellations (using constellation diagrams for guidance) and place stones where the stars are. You can then look at astronomy charts to see where the constellations they drew will be in the sky.

  • Sidewalk chalk
  • Small stones
  • Diagrams of constellations

#30: Lung Model

By building a lung model , you can teach kids about respiration and how their lungs work. After cutting off the bottom of a plastic bottle, you'll stretch a balloon around the opened end and insert another balloon through the mouth of the bottle. You'll then push a straw through the neck of the bottle and secure it with a rubber band and play dough. By blowing into the straw, the balloons will inflate then deflate, similar to how our lungs work.

  • Plastic bottle
  • Rubber band

body_dinosaurbones

#31: Homemade Dinosaur Bones

By mixing just flour, salt, and water, you'll create a basic salt dough that'll harden when baked. You can use this dough to make homemade dinosaur bones and teach kids about paleontology. You can use books or diagrams to learn how different dinosaur bones were shaped, and you can even bury the bones in a sandpit or something similar and then excavate them the way real paleontologists do.

  • Images of dinosaur bones

#32: Clay and Toothpick Molecules

There are many variations on homemade molecule science crafts . This one uses clay and toothpicks, although gumdrops or even small pieces of fruit like grapes can be used in place of clay. Roll the clay into balls and use molecule diagrams to attach the clay to toothpicks in the shape of the molecules. Kids can make numerous types of molecules and learn how atoms bond together to form molecules.

  • Clay or gumdrops (in four colors)
  • Diagrams of molecules

#33: Articulated Hand Model

By creating an articulated hand model , you can teach kids about bones, joints, and how our hands are able to move in many ways and accomplish so many different tasks. After creating a hand out of thin foam, kids will cut straws to represent the different bones in the hand and glue them to the fingers of the hand models. You'll then thread yarn (which represents tendons) through the straws, stabilize the model with a chopstick or other small stick, and end up with a hand model that moves and bends the way actual human hands do.

  • Straws (paper work best)
  • Twine or yarn

#34: Solar Energy Experiment

  • Teaches Kids About: Solar energy, light rays

This solar energy science experiment will teach kids about solar energy and how different colors absorb different amounts of energy. In a sunny spot outside, place six colored pieces of paper next to each other, and place an ice cube in the middle of each paper. Then, observe how quickly each of the ice cubes melt. The ice cube on the black piece of paper will melt fastest since black absorbs the most light (all the light ray colors), while the ice cube on the white paper will melt slowest since white absorbs the least light (it instead reflects light). You can then explain why certain colors look the way they do. (Colors besides black and white absorb all light except for the one ray color they reflect; this is the color they appear to us.)

  • 6 squares of differently colored paper/cardstock (must include black paper and white paper)

#35: How to Make Lightning

  • Teaches Kids About: Electricity, weather

You don't need a storm to see lightning; you can actually create your own lightning at home . For younger kids this experiment requires adult help and supervision. You'll stick a thumbtack through the bottom of an aluminum tray, then stick the pencil eraser to the pushpin. You'll then rub the piece of wool over the aluminum tray, and then set the tray on the Styrofoam, where it'll create a small spark/tiny bolt of lightning!

  • Pencil with eraser
  • Aluminum tray or pie tin
  • Styrofoam tray

#36: Tie-Dyed Milk

  • Teaches Kids About: Surface tension

For this magic milk experiment , partly fill a shallow dish with milk, then add a one drop of each food coloring color to different parts of the milk. The food coloring will mostly stay where you placed it. Next, carefully add one drop of dish soap to the middle of the milk. It'll cause the food coloring to stream through the milk and away from the dish soap. This is because the dish soap breaks up the surface tension of the milk by dissolving the milk's fat molecules.

  • Shallow dish
  • Milk (high-fat works best)

body_stalactite

#37: How Do Stalactites Form?

Have you ever gone into a cave and seen huge stalactites hanging from the top of the cave? Stalactites are formed by dripping water. The water is filled with particles which slowly accumulate and harden over the years, forming stalactites. You can recreate that process with this stalactite experiment . By mixing a baking soda solution, dipping a piece of wool yarn in the jar and running it to another jar, you'll be able to observe baking soda particles forming and hardening along the yarn, similar to how stalactites grow.

  • Safety pins
  • 2 glass jars

Summary: Cool Science Experiments for Kids

Any one of these simple science experiments for kids can get children learning and excited about science. You can choose a science experiment based on your child's specific interest or what they're currently learning about, or you can do an experiment on an entirely new topic to expand their learning and teach them about a new area of science. From easy science experiments for kids to the more challenging ones, these will all help kids have fun and learn more about science.

What's Next?

Are you also interested in pipe cleaner crafts for kids? We have a guide to some of the best pipe cleaner crafts to try!

Looking for multiple different slime recipes? We tell you how to make slimes without borax and without glue as well as how to craft the ultimate super slime .

Want to learn more about clouds? Learn how to identify every cloud in the sky with our guide to the 10 types of clouds .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa) .

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

45 Easy Science Experiments for Kids

Hello, STEM! These simple DIY activities can be done at home or in school.

at home water cycle science experiment for kids

We've been independently researching and testing products for over 120 years. If you buy through our links, we may earn a commission. Learn more about our review process.

Imagine blowing the biggest bubbles imaginable — or even making bubbles within bubbles. Or sending vessels — rockets, tea bags, airplanes — soaring through the sky for impossible distances. Now imagine making things explode, or change colors, or reveal hidden messages with just a few simple mixtures.

None of this is magic. It's all science that you can do at home, most likely with ingredients you already have in your house. So, next time you need a boredom-busting indoor activity on a rainy day or a DIY project to get their minds humming, try one of these best at-home science experiments for kids , which cover topics like cover magnetism, surface tension, astronomy, chemistry, physics and more.

First off, it's good to start them off with the scientific method. Give them a journal to record their observations, questions, hypotheses, experiments, results and conclusions. As always, safety counts: wear goggles and coats or aprons if need be (sometimes kids get a kick out of how scientific the protective gear makes them look), and always make sure that the kids are supervised when doing them. (Warning: Some of these are messy!)

These experiments are mostly designed for preschoolers through elementary schoolers — with a couple that are either demonstrations or better for older kids — but if you have a younger one, you can check out these 1-year-old learning activities , toddler learning activities and preschool/kindergarten learning activities , some of which also cover STEM subjects.

Floating Fish

dryerase fish float in a shallow dish of water as part of an athome science experiment for kids

Here's another one that deals with solubility and density.

  • Draw the outline of a fish on the bottom of a glass plate or tray in dry-erase marker. Retrace your drawing to make sure all the lines are connected. Let dry for a minute or two.
  • Fill the measuring cup with tap water. Place the pour spout just inside the corner of the dish and add water very slowly until it just covers the bottom. Be careful not to pour water directly onto your drawing or make splashes near it. The water will move toward your drawing, eventually surrounding it. Observe what happens. If the water splashes or it doesn’t work on your first try, empty the dish, erase the drawing with a paper towel, dry off the dish, and try again.
  • Tilt the dish slightly from side to side. What happens? Jot it down.

The ink in dry erase markers is engineered to be slippery. It’s made with a chemical that causes it to easily release from surfaces. (Permanent markers are made with a chemical that makes the ink stick to surfaces, so be sure not to use these in your experiment!)

The easy-release ink lets go from a surface, but why does it float? There are two reasons. First, dry erase ink isn’t soluble, which means it won’t dissolve in water. Second, dry erase ink is less dense than the water, so it becomes buoyant, meaning it can float. When you tilt the dish, the fish moves around on the water’s surface.

From Good Housekeeping Amazing Science: 83 Hands-on S.T.E.A.M Experiments for Curious Kids! See more in the book »

Brush, Brush!

eggs, toothbrushes and different kinds of liquids form the materials for this at home science experiment for kids

This one will really get them into brushing their teeth once they scientifically prove all the good things that toothpaste can do.

  • Write on sticky notes: Soda 1, Soda 2, Juice 1, and Juice 2. Place them in a row on a counter.
  • Fill two glasses halfway with brown soda and place behind the Soda 1 and Soda 2 sticky notes. Fill two glasses halfway with lemon juice and place behind the Juice 1 and Juice 2 sticky notes.
  • Carefully place one egg in the bowl. Squeeze a big dollop — about one tablespoon — of toothpaste on top of the egg and gently rub the toothpaste all around with your hands until the egg is completely covered in a thick layer of toothpaste. Repeat with a second egg.
  • Gently submerge the toothpaste-covered eggs into the liquids: one egg in the glass labeled Soda 1 and the other egg in the glass labeled Juice 1. Wash and dry your hands.
  • Gently submerge the remaining eggs, without toothpaste on them, in the remaining glasses: one in the glass labeled Soda 2 and the other in the glass of juice labeled Juice 2. Wash and dry your hands. Leave the eggs in the glasses for 12 hours.
  • After 12 hours, remove the eggs from the glasses of soda one at a time. Rinse them in cool water and pat them dry with the towel. Place each egg by the sticky note of the glass it was in. Are the eggs the same or different colors?
  • Remove the eggs from the glasses of juice one at a time. Rinse them under the faucet and pat them dry. Place each egg by the sticky note of the glass it was in. Feel the eggs gently. Does one feel stronger or weaker than the other?
  • Write down your observations in your science notebook.

The eggshells in this experiment represent the enamel (outer coating) on your teeth. Toothpaste cleans your teeth and prevents stains: it removes food and drink particles that are stuck on your teeth. Teeth can be stained easily by dark-colored liquids like cola, coffee or tea. The egg without toothpaste will be brown and discolored. The egg covered in toothpaste was protected from turning brown.

Toothpaste also protects your pearly whites from decay (breaking down). The egg without toothpaste left in the lemon juice was worn down and soft to the touch, while the egg that was protected with toothpaste is stronger. The lemon juice is acidic, and those acids broke down the shell just as acidic drinks can wear away your tooth enamel. When a tooth is worn down, a cavity can form more easily. But the fluoride in toothpaste mixes with your saliva to create a protective coating around your tooth enamel. It helps keep your teeth strong and cavity-free.

Grow an Avocado Tree

an avocado tree grows from a pit as part of this at home science experiment for kids

For an easy lesson in Earth Science, your family can grow an avocado tree from a pit. You can buy an AvoSeedo kit , or just peel the seed and suspend it over water with toothpicks.

Get the tutorial »

Milk Bottle Xylophone

milk bottle xylophone consisting of seven bottles of varying amounts of coloured water and a metal spoon, in a row, as part of an at home science experiment

No for an experiment in sound!

  • Arrange six glass jars or bottles, all the same size with no lids, in a line. What will each jar sound like when you tap it with a spoon? Make a prediction, then tap each jar. Record your observations.
  • Next, put water in each of the jars. Pour 1⁄4 cup (60 ml) of water into the first jar. Add 1⁄2 cup (120 ml) of water to the second jar. Continue in 1⁄4-cup increments, adding 3⁄4 cup (180 ml) of water to the third jar, 1 cup (240 ml) of water to the fourth jar, 11⁄4 cups (300 ml) of water to the fifth jar, and 11⁄2 cups (360 ml) to the sixth jar. Add a couple of drops of food coloring to each jar.
  • What will each jar sound like? Will they sound the same or different than when the container was empty? Will they sound the same or different from one another? Record your predictions.
  • Tap each jar with a metal spoon. Write down your observations about each jar’s pitch (how high or low a sound is) in your notebook.

Sound waves are created by vibrations, which are back-and-forth movements that are repeated again and again. Pitch depends on the frequency of the waves — how many are created each second. A high pitch is created by high-frequency sound waves, and can sound squeaky. A low pitch is created by low-frequency sound waves, and sounds deep and booming.

When you tapped the jar, it vibrated. The vibrations traveled from the jar to the water to the air and eventually to your ears. The jars with more water had a low pitch. The sound waves vibrated more slowly because they had more water to travel through. The jars with less water had higher pitches. The sound waves vibrated faster because they had less water to travel through. A jar with no water in it makes the highest pitch because it has the least substance to travel through.

"Elephant Toothpaste"

foamy striped elephant toothpaste overflows from a bottle in this science experiment for kids

Okay, elephants don't really brush with this stuff, which is made from a chemical reaction between hydrogen peroxide, yeast, dish soap and a few other simple ingredients. But this experiment has a big "wow" factor since, when the substances are mixed, the "toothpaste" foams out of the bottle. You can use it to teach kids about catalysts and exothermic reactions.

Get the tutorial at Babble Dabble Do »

DIY Compass

a diy compass, made as a science experiment for kids, floats in a bowl next to a digital compass pointing in the same direction

Explore the way magnetism works, and how it affects everyday objects, by magnetizing a needle and making a DIY compass. You can even spin the compass in the water, and it'll end up pointing the right way again.

Get the tutorial at STEAM Powered Family »

Craft Stick Chain Reaction

colored craft sticks with pom poms on top are lined up on grass as part of a science experiments for kids about chain reactions and potential and kinetic energy

Kids can learn about the differences between potential and kinetic energy with this chain reaction. It makes a big impact: Once the tension is released, the pom poms go flying through the air!

Get the the tutorial at Science Sparks »

Color-Changing Invisible Ink

different messages and pictures are written in different substances to test out different color changing invisible inks as part of a science experiment for kids

Kids will feel like super-spies when they use this heatless method to reveal pictures or colors written with "invisible ink." You can try different acid/base combinations to see which one makes the most dramatic result.

Get the tutorial at Research Parent »

Paper Bridge

pennies sit on a construction paper bridge that spans two red solo cups in this science experiment for kids

Get the engineering back into STEM with this activity, which challenges kids to create a paper bridge that's strong enough to hold as many pennies as possible. How can they manipulate the paper to make it sturdier? (Hint: Fold it!)

See the paper bridge tutorial at KidsActivities.com »

an ice cube is suspended on a string above a bowl of ice in this science experiment for kids

Challenge your little scientist to lift up an ice cube with just a piece of string. It's possible ... with a little salt to help. Salt melts the ice and lowers the freezing point of the ice cube, which absorbs the heat from the water around it, making the water cold enough to re-freeze around the string.

Get the tutorial at Playdough to Plato »

Marshmallow Catapult

a marshmallow catapult made from craft sticks and a wooden spoon is a great science experiment for kids

Another lesson in potential and kinetic energy, kids will love sending mini marshmallows flying in the name of science. Change some of the variables and see how that affects the marshmallow's trajectory.

Get the tutorial at Hello, Wonderful »

Leaf Breathing

bubbles form on a leaf under water as part of a leaf breathing science experiment for kids

It's hard for kids to picture how plants and trees "breathe" through their leaves — until they see the bubbles appear on a leaf that's submerged in water. You can also teach them about photosynthesis by putting different leaves in different spots with varying levels of sunlight.

Get the tutorial at KC EDventures »

Hoop-and-Straw Airplane

a hoop and straw airplane, created as part of a science experiment for kids, sits on a black background

We all remember how to fold those classic, triangular paper airplanes, but these hoop-and-straw airplanes fly way better (and straighter). Experiment by changing the length of the straw and the size of the hoops and see how it affects the flight.

Get the tutorial at Mombrite »

Film Canister Rocket

a diy rocket takes off from a table, where another rocket waits, in this science experiment for kids

Blast off! You don't need jet fuel to make these rockets go, just Alka-Seltzer tablets and baking soda, but they'll be amazed when they achieve lift-off! (Note: If you can't find old film canisters, tubes of Airborne work, too.)

Get the tutorial at Raising Lifelong Learners »

Coin Inertia

a stack of coins sits on a piece of cardboard on top of a glass of water as part of a science experiment for kids about inertia

Stack up about five or so coins on a piece of cardboard and place it over a glass of water. Then, flick the cardboard out from on top of the glass. Do the coins drop into the water, or ride with the cardboard? Due to inertia, they drop into the water — a very visual (and fun!) demonstration of Newton's First Law of Motion.

Get the tutorial at Engineering Emily »

Apple Oxidation

science experiments for kids   apple oxidation

What works best for keeping an apple from turning brown? Test to find out! Slice up an apple, and let each slice soak in a different liquid. Then take them out, lay them on a tray, and check the brownness after three minutes, six minutes and so on. Not only does this test the properties of different liquids, it also helps students practice the scientific method if they create hypotheses about which liquids would be most effective.

Get the tutorial at Jennifer Findley »

RELATED: 50 Fun Activities for Kids Will Keep Them Entertained for Hours

Coffee Ground Fossils

a salt dough circle "fossil" with dinosaur footprints, made as part of an athome science experiment for kids

By making a salt dough with coffee grounds and pressing various shapes into it (toy dinosaur feet, seashells), kids can get a better understanding of how fossils are made. If you poke a hole in the top before it dries, the kids can hang their "fossils" up in their rooms.

Get the tutorial at Crafts by Amanda »

Chromatography Flowers

a coffee filter flower with an led in the center is decorated with swirls of color as part of this at home science experiment for kids

Chromatography is the process of separating a solution into different parts — like the pigments in the ink used in markers. If you draw stripes around a coffee filter, then fold it up and dip the tip in water, the water will travel up the filter and separate the marker ink into its different pigments (in cool patterns that you can display as a craft project). This family made the end-result even brighter by adding an LED circuit to the center.

Get the tutorial at Steam Powered Family »

Water Walking

five cups with different colored liquid in them are connected by paper towel bridges as part of this at home science experiment for kids

You'll need six containers of water for this one: three with clear water, one with red food coloring, one with blue coloring, and one with yellow coloring. Arrange them in a circle, alternating colored and clear containers, and make bridges between the containers with folded paper towels. Your kids will be amazed to see the colored water "walk" over the bridges and into the clear containers, mixing colors, and giving them a first-hand look at the magic of capillarity.

Get the tutorial at Fun Learning for Kids »

Sunscreen Test

colorful construction paper painted with different sunscreens, as part of an athome science experiment for kids

This experiment puts the A (art) in STEAM: Paint different designs on construction paper with different sunscreens, leave the papers out in the sun and compare the results. Then, hang your "conclusions" on your fridge.

Get the tutorial at Tonya Staab »

Headshot of Marisa LaScala

Marisa (she/her) has covered all things parenting, from the postpartum period through the empty nest, for Good Housekeeping since 2018; she previously wrote about parents and families at Parents and Working Mother . She lives with her husband and daughter in Brooklyn, where she can be found dominating the audio round at her local bar trivia night or tweeting about movies.

preview for Good Housekeeping US Section: Life

Parenting Tips & Advice

kids' birthday food at schoole

Teacher Says Never Bring Cupcakes To School

paper cutout of kids holding hands with illustrative elements

How My Son With Disabilities Is Making Friends

childs hand holding up a magnifying glass to illustrated eye with other whimsical elements

What to Do When a Kid Stares at Someone

baby boy set against a fun, polkadot background in a story about baby boy names

The 1,000 Most Popular Baby Boy Names Right Now

woman and young girl outdoors with people in background

80 Best Grandma Names That Are as Unique as She Is

non nuclear families

Why Non-Nuclear Families Are on the Rise

disney baby names, mickey and minnie mouse

100 Best Disney Baby Names

french baby names mom and baby in front of eiffel tower in paris

140 Chic French Baby Names

the bad guys, spirited away and coco are three of good housekeeping's picks for the best animated movies

The 50 Best Animated Films to Watch With Your Kids

baby legs in gray cable knit romper

220 Top Gender-Neutral Baby Names

african american mother helping daughter pack for college

Here's What NOT to Do When Kids Go to College

large and small flamingo pool float in water

The Case for the One-on-One Family Vacation

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • MEMBER LOGIN

Hands On As We Grow®

Hands on kids activities for hands on moms. Focusing on kids activities perfect for toddlers and preschoolers.

50 Amazingly Simple Science Experiments for Kids at Home

Science Kindergartners Preschoolers Experiment Resources 30 Comments

Kids love experimenting , and these 50 simple science experiments for kids at home from Brigitte are perfect for all ages! Plus, you probably already have the basic supplies at home.

My daughters and I have had a lot of fun doing science experiments. Each year when we create our spring and summer list , we make sure to include “science days” which are days filled with science experiments.

Sometimes our science experiments don’t work according to plan, but I have been told that all scientists have failures with experiments from time to time.

It’s okay if they aren’t all successes.

Get the FREE Science Experiments Download

50 Simple Science Experiments with Supplies You Already Have

Try these 50 simple science experiments for kids that use supplies you already have at home!

I love these 50 simple science experiments for you to try with your little scientists. They all use basic household supplies that you probably already have at home!

Most of these are experiments my daughters and I have done together. I hope you enjoy them as much as we have!

Get little ones involved with these easy toddler-friendly science experiment ideas!

Sink or Float Simple Science Experiment for Kids to try at home, fine 50 easy science experiments for kids!

Simple Science Experiments with Water

Not only can water  be a blast to play in, but water plus a few basic supplies equals a lot of science fun!

  • Make an orange sink and float with an orange buoyancy experiment from Playdough to Plato.
  • Compare the amount of salt in different types of water with this salty egg experiment  as seen on Uplifting Mayhem.
  • Do a little more sinking or floating with a fun sink or float experiment  even toddlers can do from Hands On As We Grow.
  • Use the free printable to record what sinks or floats in an outdoor experiment from Buggy and Buddy.
  • Create some beautiful pieces of paper with this rainbow paper experiment from Science Kiddo.
  • Talk about solutions as you try the “what dissolves in water” experiment  as seen on Hands On As We Grow.
  • Learn about water absorption with this simple experiment from Little Bins for Little Hands.
  • Mix some fun colors with this oil and water experiment  from Fun Learning for Kids.
  • Make your own lava lamp , just like on  Hands On As We Grow.
  • Can you keep all the water in the bag? Try it with a  leak-proof bag experiment  as seen on Hands On As We Grow.
  • Learn about surface tension with this  magic finger pepper experiment  found on Hands On As We Grow.
  • Make your own  water cycle in a bottle  as seen on A Dab of Glue Will Do.

Colored Baking Soda & Vinegar Simple Science Experiment for Kids to try at home, fine 50 easy science experiments for kids!

Simple Science Experiments with Baking Soda and Vinegar

Baking soda + vinegar = a great chemical reaction! This fizzy reaction can fuel a variety of simple science experiments at home.

First of all, we have tested and found out the absolute best combination of baking soda and vinegar to get the best reaction possible. It makes a difference if you add vinegar to baking soda or vice versa! And how much you use!

  • Inflate a balloon without blowing into it with a baking soda and vinegar balloon experiment  as seen on Little Bins for Little Hands.
  • Practice colors as you do a baking soda and vinegar with color experiment as seen on Hands On As We Grow.
  • Have fun outside with an outdoor volcano eruption  as seen on Preschool Inspirations.
  • Have more volcano fun by making apple volcanoes as seen on The Resourceful Mama.
  • Learn about acids and bases and the chemical reaction that occurs when you make apple seeds dance with a   jumping apple seeds experiment  as seen on JDaniel4s Mom.
  • Watch some rice dance with a   dancing rice experiment as seen on Green Kid Crafts.
  • Continue your dance party by making raisins dance with a dancing raisin experiment  as seen on 123 Homeschool 4 Me. What other items can you get to dance?
  • Learn more about acids and bases by dissolving a sea shell as seen on Teach Beside Me.
  • Make an egg shell disappear with this disappearing egg activity  as seen on Premeditated Leftovers.
  • See how far you can launch a soda bottle with this baking soda powered boat as seen on Science Sparks.
  • Make your own rocks (or eggs) with this fizzy treasure rocks experiment as seen on Living Life and Learning.
  • Have some fun this summer with this frozen vinegar experiment as seen on Inspiration Laboratories.

Plant Themed Simple Science Experiments

Enjoy learning about seeds, plant parts, and how plants grow with these simple science experiments.

  • Learn about how plants soak up water through their stems with a flower experiment for kids  from Growing A Jeweled Rose.
  • Watch seeds sprout as you grow seeds in a jar  as seen on Teaching Mama.
  • Learn about the parts of the seed with a seed coat experiment as seen on Gift of Curiosity.
  • Build a house out of sponges and then watch it sprout with this sprout house as seen on The Stem Laboratory.
  • Learn what liquids allow seeds to grow the best with this seed experiment  as seen on Gift of Curiosity.
  • Explore how plants grow towards the light with this shoe-box maze experiment from Plants for Kids.

Try these 50 simple science experiments for kids that use supplies you already have at home!

Animal Themed Simple Science Experiments

Learning about animals can be even more fun with some simple hands-on simple science experiments.

  • Find out more about giraffes and create some giraffe spots  as seen on Preschool Powol Packets.
  • Learn about how animals in the Arctic keep warm by making an arctic glove  as seen on Steve Spangler Science.
  • Discover how penguins stay dry with a penguin feather experiment as seen on Raising Little Superheroes.
  • Learn about different bird beaks with a bird beak experiment as seen on Blessed Beyond a Doubt.
  • Explore how fish (and hermit crabs) breathe with this gill experiment  as seen on Preschool Powol Packets.
  • Learn about sharks with a   shark buoyancy experiment as seen on Little Bins for Little Hands.

Color Changing Milk Simple Science Experiment for Kids to try at home, fine 50 easy science experiments for kids!

Even More Simple Science Experiment for Kids at Home!

If you are still looking for more science fun, you may enjoy the following simple science experiments.

  • Find out how sugary drinks hurt teeth with an  eggs-periment  as seen on Feels Like Home Blog.
  • Discover geodes (the state rock of Iowa) with this eggshell geode crystal experiment  as seen on Science Bob.
  • Learn about air pressure with an egg and bottle experiment  as seen on Science Sparks.
  • Find out what causes an apple to brown with this apple science experiment  as seen on Teach Beside Me.
  • Make an  edible bubble apple with an experiment as seen on Preschool Powol Packet.
  • Learn more about surface tension with a penny and water experiment  as seen on Artful Parent.
  • Mix colors like magic with this color changing milk experiment  from Hands On As We Grow.
  • Blow up a balloon with this soda and balloon experiment from Learn Play Imagine.
  • Practice letters by making beautiful crystal letters as seen on Books and Giggles.
  • Make your own indoor hovercraft  as seen on Living Life and Learning.
  • Learn about colors with this beautiful butterfly chromatography craft  as seen on Buggy and Buddy.
  • Make soap souffle  as seen on Steve Spangler Science.
  • After talking about liquids and solids (and finding them in your own home), create oobleck  as seen on Babble Dabble Do. Is it a liquid, or is it a solid?
  • Learn about frost by making some indoor frost as seen on Little Bin for Little Hands.
  • Make your own homemade butter in a jar as seen on Happy Hooligans.

What scientific experiment will you try first?

Try these 50 simple science experiments for kids that use supplies you already have at home!

About Brigitte Brulz

Brigitte Brulz is a homeschooling mom of two daughters, wife of her high school sweetheart, and author of Jobs of a Preschooler and Pickles, Pickles, I Like Pickles. She offers free coloring pages and activity ideas on her website at BrigitteBrulz.com .

More Hands on Kids Activities to Try

science experiments decorations

Reader Interactions

30 comments.

college brawl says

March 13, 2024 at 1:05 am

Wow, these experiments look like so much fun! I can’t wait to try them out with my kids. We’re always looking for new and creative ways to learn about science at home, and these experiments look like they’ll be perfect for us. Thanks for sharing! 😊

threadsBay says

August 31, 2023 at 3:13 am

I love science experiments! This one is really simple and easy to do.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

science experiments decorations

What Parents Have to Say…

Shop ebooks of activities.

Activity Capsule Grab & Go Bags

Get activity plans delivered to your inbox, every week!

Activities that hands-on parents absolutely love.

Collection of physical activities for toddlers with a lot of energy to spend!

Top Physical Activities for Toddlers! Mom, Embrace the Energy!

Dive into early learning with 40+ number activities for preschoolers!

40+ Awesome Number Activities for Preschoolers

Build gross motor skills with five easy activities using just six lines of tape1

6 Different Activities for 6 Lines of Tape

science experiments decorations

30+ Scavenger Hunt Ideas for Kids To Do at Any Age

science experiments decorations

25 Sensory Activities for Kids with Sensory Tubs & Further Exploration

science experiments decorations

50+ Simple Activities for Toddlers

Get started having fun with your kids.

PLAN THE FUN WITH THE FREE KIDS ACTIVITIES PLANNER! AND RECEIVE ACTIVITIES EVERY WEEK!

Hands On As We Grow®

  • Preschoolers
  • Kindergartners
  • Grade School
  • Literacy & ABCs
  • Math & 123s
  • Art Projects
  • Gross Motor
  • Shop Activity Plans
  • Member Login

science experiments decorations

How To : The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Most of us have conducted an investigatory science project without even knowing it, or at least without knowing that's what it was called. Most science experiments performed, from elementary to high school students and all the way up to professional scientists, are investigatory projects.

What's an Investigatory Project Exactly?

An investigatory project is basically any science experiment where you start with an issue or problem and conduct research or an investigation to decide what you think the outcome will be. After you've created your hypothesis or proposal, you can conduct a controlled experiment using the scientific method to arrive at a conclusion.

What's the Scientific Method?

For those of us who have forgotten the various steps of the scientific method, let me clear that up right here:

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Remember, however, that a successful investigatory science project does not necessarily have to result in the intended outcome. The purpose of these projects is to think critically, and if the solution doesn't work out, that doesn't mean your project will fail.

What Kind of Investigatory Projects Are There?

In order to conduct a great investigatory experiment, you have to ask an interesting question and be able to conduct an experiment that can hopefully answer that question. The harder and more intriguing the initial question is, the better the resulting investigation and experiment will be.

I've listed a few examples below of some of the best investigatory experiments out there, so hopefully you'll have no problem coming up with an idea.

Project #1: Making Soap Out of Guava

Basic hygiene should be available to everyone, but what about people who live in areas without easy access to grocery stores or pharmacies? This is a great question that makes you think about scientific alternatives to store-bought soap.

Below is an example project that creates soap from guava leaf extract and sodium hydroxide, but there's no shortage of materials you can use to replace the guava, like coconut oil or a fat like lard, butter or even the grease from your kitchen .

Project #2: Used Cooking Oil as a Substitute for Diesel

We all know how lucrative the oil business is, but what if the next huge innovation in oil was sitting right inside your kitchen cabinet? With the high prices of regular gasoline and diesel fuel, the possibility of creating a usable diesel fuel from household cooking oils is pretty exciting.

Although creating diesel fuel out of cooking oils that will run a BMW may sound like a reach, it still makes for a great project. And who knows, maybe in doing this you'll actually figure out what was missing from previous attempts . Being an instant billionaire doesn't sound too bad to me.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

If you're interested in trying it for yourself, there's a great step-by-step guide with a full ingredients list and photos over on Make .

Project #3: Create Another Alternative Fuel

If biodiesel isn't your forte, you can try making oxyhydrogen gas or creating hydrogen gas via electrolysis or vice versa, creating electricity from hydrogen gas .

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Project #4: Purifying Used Cooking Oil

Speaking of oil, if you use it to cook, you know that a lot of it goes to waste. But what if you could clean that oil and use it over and over again? Not only would that save money, but it would also benefit the environment since most people do not properly dispose of used cooking oil (no, pouring it down the drain doesn't count).

Your project goal would be to research methods of filtration or purification and test it on cooking oils. To easily demonstrate which method works best, try cooking some food in the oil produced by each one. Good food can go a long way when it comes to winning people over.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Check out the abstract and description of a similar project here .

Project #5: Alternative Methods of Producing Iodized Salt

In areas isolated from the sea, IDD or Iodine Deficiency Disease, is very common. Since these areas do not have easy access to marine foods or grocery stores, the population becomes very susceptible to the disease due to a lack of iodine in the diet. In order to combat this, researchers and doctors have begun infusing iodine into regular table salts.

If not iodine is readily available, it can be chemically made either with sulfuric acid and alkali metal iodide or hydrochloric acid and hydroxide peroxide .

But perhaps there are other more accessible ways to create an iodized salt that people could make at home. For a starting point, take a look at this previous experiment .

Project #6: Making Biodegradable Plastic

Plastic bags are actually illegal in Santa Monica , CA (and soon to be Los Angeles ) because of their threat to the environment due to insane resistance to biodegradation. I didn't think they were that bad, but one plastic bag can take up to 1,000 years to break down completely, and it can even ruin your car along the way. So, creating a better biodegradable plastic bag would be a huge achievement.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

The only question is how one would go about doing so, and what materials could be used? That's the question you can answer for your project. This project used cassava starch as an effective component for a biodegradable plastic, but you could try using a few different starches and see what works best.

Project #7: Solar Water Purification

One of the biggest world problems is finding clean water. While we in the states can find purified or drinkable tap water almost anywhere, millions of people around the world don't have access to clean drinking water.

A few students decided to investigate a potential purification process using the sun's energy and an aluminum sheet. Watch the video below for more information and a complete walkthrough of their scientific process.

And if you're an overachiever, you can step it up a notch and try purifying pee instead .

Project #8: Perfecting the Paper Bridge

Of course, an investigatory project doesn't always have to answer such grand questions. This experiment looks to discover how to build the strongest paper bridge by varying how the pieces are held together. So, the question is, "How do design changes affect a load bearing structure?"

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Check out the video below for more information on replicating the project yourself.

Project #9: Making Instant Ice

It's summer time and the degrees are already hitting triple digits in some areas. When it's this hot, there are few things better than a glass of ice chilled water or lemonade. But what happens if you don't have ice? Can you create your own ice or cool drinks quickly by another method? Check out this clip from King of Random .

Cool, huh? But how does it work? Is there any other way to replicate this? Well, let the investigation begin. Figure out what your hypotheses will be and follow along with this video for you own investigatory project.

For more information and additional photos, be sure to check out the King of Random's full tutorial .

Project #10: Increase the Shelf-Life of Fruits and Veggies

Extending the shelf-life of perishable fruits and vegetables can make a huge difference for small farmers, street-side vendors and even your average Joe—groceries aren't cheap. What is an inexpensive and easily accessible way to make produce stay fresh longer?

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

That's the question behind this great investigatory science project featured here . While these researchers focused exclusively on chitosan coating on bananas, you can branch out (no pun intended) and try an assortment of other fruits, veggies and possible coating materials.

For more information on how to keep your fruits and vegetables fresh for longer, check out my previous article , or Yumi's recent illustration for other ideas.

Project #11: Slow the Ripening of Sliced or Chopped Produce

You could also focus your project on keeping fruits and vegetables from browning after they've already been cut up. There are various methods and materials you can use to slow down the ripening process, such as honey and lemon juice. Watch the video below and read this tutorial for more information and ideas.

Your project could revolve around finding the best option, and testing out some of your own browning-prevention solutions to see if you can come up with a better one.

Project #12: Improve Memory by Thinking Dirty

If my memory was any good I would be fluent in Spanish and never need to look up the Quadratic Formula again. But my problems are more superficial, like forgetting where I put my keys or what time my dentist appointment was supposed to be. There are folks out there who do suffer from real memory problems, so figuring out how to help improve memory makes for a great investigatory project.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

There are tons of studies on memory and memory loss that you can research. But for your investigatory science project, you will want to come up with your own hypothesis based on that information and test it out. Does using colors to form associations help with memory? Does linking an image with a memory increase its hold in the carrier's head? What about drinking grape juice or sniffing rosemary ? These are the types of questions you may look to answer.

This article contends that memory can be improved by looking at NSFW images or thinking of dirty associations. Come up with your own theory and let the brain hacking begin.

Project #13: Improving Social Anxiety by Manipulating the Body & Mind

Science experiments don't always have to include chemicals or test tubes. The science of the mind can be just as interesting. So what's the investigation consist of?

Can you truly affect the way you act and feel by simply changing your posture? Does acting a certain way manipulate the mind drastically enough to actually change the way you feel?

Check out Amy Cuddy's awesome TED Talk for more ideas for additional questions you could ask.

Project #14: Kitchen DNA Extraction

You may think studying DNA is only for professionals with super expensive lab equipment, but you can actually extract DNA from any living thing with a few basic ingredients you probably have in your kitchen like dish soap and rubbing alcohol.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Decide on something to vary, like different fruits and vegetables or types of dish soap, and come up with a hypothesis regarding which will allow you to collect the most DNA material.

You can also find more information, as well as another way to perform the experiment, here .

Project #15: Make Homemade Glue from Milk

With milk, white vinegar and baking soda, you can make your own glue right at home. Make it an investigatory project by changing up the recipe and testing which results in the strongest glue. You could also try varying the ingredients to make it dry faster, or work on different materials (wood vs. plastic vs. paper).

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Project #16: Make a Battery Out of Fruits and Vegetables

How can you power a small light or device without electricity? You can make a DIY battery with a few different types of fruits and vegetables. Anything from a lemon to an apple , potato , or even passion fruit will work.

The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project

Pick a few different fruits or vegetables and form a hypothesis as to which will make the battery that puts out the most energy or lasts the longest. Once you've built your batteries, hook up a volt meter to read the output and see which one is the best.

What's Your Favorite?

Know of an awesome investigatory project that's not on the list, like wireless electricity or cheaper x-ray machines ? Let us know in the comments below. If you decide to use any of these ideas for your own project, be sure to take some photos and show off your results over in the Inspiration section !

Just updated your iPhone? You'll find new features for TV, Messages, News, and Shortcuts, as well as important bug fixes and security patches. Find out what's new and changed on your iPhone with the iOS 17.6 update.

15 Comments

It's the best thing av seen

these things are really useful............

All of this was perfect for my Investigatory Project . ! :D

"All of this 'were' perfect for my Investigatory Project"

"all of 'these' were perfect for my investigatory project

heheh !! all of these examples above are usefull.. great job kuya's ang ate's heheh muah muah

how i can make a gameor a toy based on a scientific principal for class x

It really helps me to find a good topic for my investigatory project. Thanks. :)

how about devices that remove particles from the smoke/gas

yes biodegradable plastic bag is better but how ?

i like it so much i have now a science investigatory project

thanx for these I`ve enjoy it... i have now a sip

Is it possible to invent a machine that automatically segregate our trash? I want to make it possible through SIP...

nice and amazing

Share Your Thoughts

Make slime without borax : 5 easy recipes for gooey homemade ooze, how to : make this amazing 9-layer density tower from things found in your kitchen, how to : make soap out of guava leaf extract for a science investigatory project, how to : make a monster dry ice bubble, how to : make a crazy foam explosion science experiment, classic chemistry : colorize colorless liquids with "black" magic, aka the iodine clock reaction, how to : make diy nitrogen triiodide from ammonia & water purification iodine crystals, how to : weather forecast and weather predict without technology, how to : turn milk into strong natural glue with baking soda and vinegar, how to : balance a chemical equation with ease, how to : make water freeze into ice instantaneously, how to : make chlorine gas with pool chlorine and hydrochloric acid, how to : extract dna from wheat germ, how to : extract dna from a strawberry with basic kitchen items, news : what happens when you mix coca cola and milk, how to : make hydrochloric acid from salt, how to : make boric acid from borax, how to : how do you balance 14 nails on a single nailhead find out with this diy gravity puzzle, how to : dispose of liquid wastes from chemistry labs.

  • All Features

How To : Make iodine from hydrochloric acid and H2O2

  • All Hot Posts

We have emailed you a PDF version of the article you requested.

Can't find the email?

Please check your spam or junk folder

You can also add [email protected] to your safe senders list to ensure you never miss a message from us.

20 Awesome Science Experiments You Can Do Right Now At Home

Complete the form below and we will email you a PDF version

Cancel and go back

IFLScience needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time.

For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our Privacy Policy

Complete the form below to listen to the audio version of this article

Advertisement

Subscribe today for our  Weekly Newsletter  in your inbox!

guest author image

Morenike Adebayo

Guest Author

DOWNLOAD PDF VERSION

article image

We can all agree that science is awesome. And you can bring that awesomeness into your very own home with these 20 safe DIY experiments you can do right now with ordinary household items.

1. Make Objects Seemingly Disappear Refraction is when light changes direction and speed as it passes from one object to another. Only visible objects reflect light. When two materials with similar reflective properties come into contact, light will pass through both materials at the same speed, rendering the other material invisible. Check out this video from BritLab  on how to turn glass invisible using vegetable oil and pyrex glass.

2. Freeze Water Instantly When purified water is cooled to just below freezing point, a quick nudge or an icecube placed in it is all it takes for the water to instantly freeze. You can finally have the power of Frozone from The Incredibles on a very small scale! Check out the video on this "cool" experiment. 

3. Create Oobleck And Make It Dance To The Music Named after a sticky substance in a children’s book by Dr Seuss , Oobleck is a non-Newtonian fluid, which means it can behave as both a solid and a liquid. And when placed on a sound source, the vibrations causes the mixture to gloopily dance. Check out these instructions from Housing A Forest  on how to make this groovy fluid funk out in every way.

4. Create Your Own Hybrid Rocket Engine With a combination of a solid fuel source and a liquid oxidizer, hybrid rocket engines can propel themselves. And on a small scale, you can create your own hybrid rocket engine, using pasta, mouthwash and yeast. Sadly, it won’t propel much, but who said rocket science ain’t easy? Check out this video from NightHawkInLight on how to make this mini engine.

5. Create "Magic Mud" Another non-Newtonian fluid here, this time from the humble potato. "Magic Mud" is actually starch found in potatoes. It’ll remain hard when handled but leave it alone and it turns into a liquid. Make your own “Magic Mud” with this video.

6. Command The Skies And Create A Cloud In A Bottle Not quite a storm in a teacup, but it is a cloud in a bottle. Clouds up in the sky are formed when water vapor cools and condenses into visible water droplets. Create your own cloud in a bottle using a few household items with these wikiHow instructions .

7. Create An Underwater Magical World First synthesized by Adolf van Baeyer in 1871, fluorescein is a non-toxic powder found in highlighter pens, and used by NASA to find shuttles that land in the sea. Create an underwater magical world with this video from NightHawkInLight .

9. Make Your Own Lava Lamp Inside a lava lamp are colored bubbles of wax suspended in a clear or colorless liquid, which changes density when warmed by a heating element at the base, allowing them to rise and fall hypnotically. Create your own lava lamp with these video instructions.

10. Create Magnetic Fluid A ferrofluid is a liquid that contains nanoscale particles of metal, which can become magnetized. And with oil, toner and a magnet , you can create your own ferrofluid and harness the power of magnetism! 

12. Make Waterproof Sand A hydrophobic substance is one that repels water. When sand is combined with a water-resistant chemical, it becomes hydrophobic. So when it comes into contact with water, the sand will remain dry and reusable. Make your own waterproof sand with this video .

13. Make Elephant's Toothpaste Elephant’s toothpaste is a steaming foamy substance created by the rapid decomposition of hydrogen peroxide, which sort of resembles giant-sized toothpaste. Make your own elephant’s toothpaste with these instructions.

14. Make Crystal Bubbles When the temperature falls below 0 o C (32 o F), it’s possible to freeze bubbles into crystals. No instructions needed here, just some bubble mix and chilly weather.

15. Make Moving Liquid Art Mixing dish soap and milk together causes the surface tension of the milk to break down. Throw in different food colorings and create this trippy chemical reaction.

16. Create Colourful Carnations Flowers absorb water through their stems, and if that water has food coloring in it, the flowers will also absorb that color. Create some wonderfully colored flowers with these wikiHow instructions .

17. "Magically" Turn Water Into Wine Turn water into wine with this  video  by experimenter Dave Hax . Because water has a higher density than wine, they can switch places. Amaze your friends with this fun science trick.

18. Release The Energy In Candy (Without Eating It) Dropping a gummy bear into a test tube with potassium chlorate releases the chemical energy inside in an intense chemical reaction. That’s exactly what's happening when you eat candy, kids.

19. Make Water "Mysteriously" Disappear Sodium polyacrylate is a super-absorbent polymer, capable of absorbing up to 300 times its own weight in water. Found in disposable diapers, you can make water disappear in seconds with this video .

20. Create A Rainbow In A Jar Different liquids have different masses and different densities. For example, oil is less dense than water and will float on top of its surface. By combining liquids of different densities and adding food coloring, you can make an entire rainbow in a jar with this video .

There you have it – 20 experiments for you to explore the incredible world of science!

ARTICLE POSTED IN

experiment,

fluorescein,

rocket engine,

hydrogen peroxide,

sodium acetate,

ferrofluid,

More Space and Physics Stories

link to article

Waves across a dark blue sea with dark clouds fractures by light above

Water Is Not Actually Colorless – It Has A Subtle Tint

The comet is at the center of the image among a starry background. A wispy tail is easily seen extending from it into space

Watch Comet Tsuchinshan-ATLAS From The ISS As It Becomes Visible To The Naked Eye

Producing gallium-copper liquid metal catalysts is so easy the lab researching it performed one stage with a hand-held mortar and pestle.

"Nano Planet" Liquid Metal Catalysts Could Terminate A Major Source Of Carbon Emissions

All the biggest science news stories of the week

Gorilla Dicks, Life After Death, And Earth's New (Mini) Moon

article image

IFLScience The Big Questions: Are The Drugs Of The Future Coming From The Deep Ocean?

The biggest science news stories of the week.

Pyramid Plasma, “Killer” Whales, And An Illegal Spacewalk?

  • Skip to primary navigation
  • Skip to main content
  • Skip to footer

Science Struck

Science Struck

5th Grade Science Fair Projects

Like it? Share it!

Fifth grade science fair projects provide students the chance to explore scientific topics that intrigue them, with help from expert mentors guiding the experimentation process as students discover, analyze, and report back their results.

Kids love this messy experiment that teaches them about surface tension and gas molecules! For best results, use an open space.

Archimedes’ Screw

Archimedes’ screw is a positive displacement pump designed by Greek mathematician Archimedes that used positive displacement to move liquid or particles between locations. Primarily used for transporting water, or dewatering mines.

Workstation works by placing the open end of a helix-shaped tubing in a body of water and rotating it, with every revolution scooping up water from below and lifting it thread by thread until reaching the top. You can adjust its tilt angle to control how much rises.

Newspaper Engineering

5th grade science fairs provide meaningful opportunities for students to engage with the scientific process. While students perform experiments and analyze data, encourage them to critically consider their findings and consider why their original hypothesis did not pan out. Even “failed” experiments may still offer invaluable learning experiences by reflecting upon why their original hypothesis did not materialize as intended.

Develop teamwork and communication skills through this engineering challenge involving newspaper. Teams must use 10 sheets of paper and 18 inches of tape to erect a tower that holds their textbook.

Bridge Design

This STEM challenge provides children with an excellent way to demonstrate how geometry affects strength. Teams work in cooperation to construct different kinds of bridges before testing how much weight each can hold before collapsing under its own weight.

Provide each engineering team with a box of flat toothpicks, wood glue or Elmer’s glue, cardboard and waxed paper as well as small bucket of rock material (gravel, pebbles or sand) in which to build bridges from. Make an experiment area where each team can test their designs. Ask each team to estimate how much weight will bring down their bridge and record their predictions in their test log.

Density Demonstration

Students will explore how an object’s weight relates to its size with this fun science experiment. They’ll measure density samples from metal, plastic and wood cubes in order to understand that various materials have various densities.

Students will explore how objects float on liquids with lower densities while sinking through those with higher densities with this exciting and straightforward experiment. They will also witness first-hand how salt affects the density of water.

Static Electricity

Many children have encountered static electricity while rubbing their hair or walking on carpet while wearing socks. This occurs when an electrical charge collects extra electrons and becomes negatively charged, while water or tissue has positive charges; they attract each other!

Remind students that electrons can also conduct in dirt by creating an electroscope with aluminum foil and neodymium magnets. For safety’s sake, this experiment should only be attempted under adult supervision since these strong magnets pose serious threat. This provides a wonderful lesson about energy and electricity!

Think back to the 1960s and you may recall bell bottom pants and flowers, as well as popular home decor items like lava lamps! Created by Edward Craven Walker, these lamps were known for their vibrantly hued wax globs whirling freely inside a clear liquid base.

Lava lamps utilize an amalgam of two irreconcilable liquids – water and paraffin wax (the same kind used to produce candles). When heated, the wax becomes less dense than water, rising to the top before cooling and dissolving back into it again.

Gummy Bear Experiment

Kids love this simple gummy bear experiment to demonstrate the principle of osmosis! While it requires them to wait overnight, the results can be truly fascinating!

This demonstration’s science may be more complex, but it’s easily taught in 3rd, 4th or 5th grade classrooms. First, potassium chlorate is melted using an endothermic process before decomposing to release carbon dioxide and water, repeating itself over and over – every cycle affects gummy bears!

Insect Attraction

Old explanations for why moths are attracted to lights haven’t stood up well under scrutiny, so students review what is known and devise an experiment designed to determine whether it’s heat or light that attracts moths and other insects.

Experience the lifecycle of a praying mantis insect through this insect experiment or watch its lifecycle in real time with bug watching! Kids also get to learn tactile communication through projects that explore honeybee dance language – great way to teach biology, physics and chemistry!

Get Updates Right to Your Inbox

Privacy overview.

110+ Best Science Investigatory Project Topics: Dive into Science

Science Investigatory Project Topics

  • Post author By admin
  • September 29, 2023

Explore a wide range of science investigatory project topics to engage in innovative research and make significant contributions to the field.

Get ready to dive headfirst into the thrilling world of Science Investigatory Project (SIP) topics! Imagine a journey where you become a scientist, an explorer of the unknown, and a solver of real-world puzzles.

This is what SIP offers – a chance to channel your inner curiosity and creativity into the fascinating realm of science.

From unlocking the secrets of life in biology to experimenting with the wonders of chemistry, from unraveling the mysteries of the universe in physics to addressing vital environmental issues – SIP topics are your keys to a world of exploration.

In this adventure, we’ll guide you through an array of captivating SIP ideas. These topics aren’t just assignments; they’re opportunities to uncover new knowledge, make a difference, and have a blast along the way.

So, gear up for an exciting journey, as we unveil the science topics that could spark your imagination and fuel your passion for discovery. Let’s begin!

Table of Contents

What is a Science Investigatory Project?

Imagine stepping into the shoes of a scientist – asking questions, running experiments, and discovering the secrets of the world around you. That’s exactly what a Science Investigatory Project, or SIP, is all about.

At its core, a SIP is a thrilling journey of scientific exploration. It’s a project that challenges you to pick a problem, make educated guesses (that’s your hypothesis), roll up your sleeves for experiments, collect data, and connect the dots to find answers.

Here’s how it works

Step 1: the mystery.

You start with a question – something that piques your curiosity. It could be anything from “Why do plants grow towards the light?” to “What makes the sky blue?” Your SIP is your ticket to unravel these mysteries.

Step 2: The Guess

Next comes your hypothesis – a fancy word for your best guess at the answer. It’s like saying, “I think this is what’s happening, and here’s why.”

Step 3: The Detective Work

Now, it’s time for the fun part – experimenting! You set up tests, tweak variables, and observe closely. Whether you’re mixing chemicals, observing insects, or measuring temperature, you’re the scientist in charge.

Step 4: Clues and Evidence

As you experiment, you collect clues in the form of data – numbers, measurements, observations. It’s like gathering puzzle pieces.

Step 5: The “Aha!” Moment

When you analyze your data, patterns start to emerge. You connect those puzzle pieces until you have a clear picture. Does your data support your guess (hypothesis), or do you need to rethink things?

Step 6: Sharing Your Discovery

Scientists don’t keep their findings to themselves. They share them with the world. Your SIP report or presentation is your chance to do just that. You explain what you did, what you found, and why it matters.

So, why do SIPs matter? They’re not just school projects. They’re your chance to think like a scientist, ask questions like a detective, and discover like an explorer. They’re where you become the expert, the innovator, the problem-solver.

From the mysteries of biology to the wonders of chemistry and the enigmas of physics, SIPs open doors to countless adventures in science. So, what question will you ask? What mystery will you solve? Your SIP journey awaits – embrace it, and you might just uncover something amazing.

Choosing the Right SIP Topic

Choosing the right Science Investigatory Project (SIP) topic is like selecting a path for your scientific adventure. It’s a critical decision, and here’s how to make it count:

Follow Your Passion

Your SIP topic should resonate with your interests. Pick something you’re genuinely curious about. When you’re passionate, the research becomes a thrilling quest, not a chore.

Real-World Relevance

Consider how your topic connects to the real world. Can your research shed light on a problem or offer solutions? SIPs are a chance to make a tangible impact.

Feasibility

Be realistic about the resources at your disposal. Choose a topic that you can explore within your time frame and access to equipment. Avoid overly ambitious projects that might overwhelm you.

Originality Matters

While it’s okay to explore well-trodden paths, strive for a unique angle. What can you add to the existing knowledge? Innovative ideas often lead to exciting discoveries.

Mentor Guidance

If you’re feeling uncertain, don’t hesitate to seek guidance from teachers or mentors. They can help you refine your ideas and offer valuable insights.

Remember, your SIP topic is the compass for your scientific journey. It should excite your curiosity, have real-world significance, and be feasible within your means. So, choose wisely, and let your scientific adventure begin!

Popular Science Investigatory Project Topics

Now that we’ve established the criteria for selecting a SIP topic, let’s explore some captivating ideas across various scientific domains.

  • Investigating the Effects of Various Soil Types on Plant Growth
  • The Impact of Different Water pH Levels on Aquatic Life
  • Studying the Behavior of Insects in Response to Environmental Changes
  • Analyzing the Effect of Different Light Intensities on Photosynthesis
  • Exploring the Microbial Diversity in Different Soil Samples
  • Investigating the Antioxidant Properties of Various Fruit Extracts
  • Studying the Growth Patterns of Mold on Different Types of Food
  • Analyzing the Effects of Temperature on Enzyme Activity
  • Investigating the Impact of Pollution on the Health of Local Wildlife
  • Exploring the Relationship Between Diet and Gut Microbiota Composition
  • Developing Eco-Friendly Cleaning Products from Household Ingredients
  • Investigating the Chemical Composition of Common Food Preservatives
  • Analyzing the Effects of Different Chemical Reactions on Metal Corrosion
  • Studying the Factors Affecting the Rate of Vitamin C Degradation in Fruit Juices
  • Exploring the Chemistry Behind the Colors of Fireworks
  • Investigating the Efficiency of Various Household Water Softeners
  • Synthesizing Biodegradable Polymers from Natural Sources
  • Studying the Chemical Reactions Involved in Baking Soda and Vinegar Reactions
  • Analyzing the Impact of Acids and Bases on Tooth Enamel
  • Investigating the Chemical Composition of Different Brands of Shampoos
  • Designing and Testing a Solar-Powered Water Heater
  • Investigating the Factors Affecting the Bounce Height of Balls
  • Studying the Relationship Between Temperature and Electrical Conductivity in Materials
  • Analyzing the Efficiency of Different Insulating Materials
  • Exploring the Effects of Magnetism on Plant Growth
  • Investigating the Behavior of Sound Waves in Different Environments
  • Studying the Impact of Projectile Launch Angles on Distance
  • Analyzing the Factors Affecting the Speed of Falling Objects
  • Investigating the Reflection and Refraction of Light in Different Media
  • Exploring the Relationship Between the Length of a Pendulum and Its Period

Environmental Science

  • Analyzing the Effects of Urban Green Spaces on Air Quality
  • Investigating the Impact of Microplastics on Marine Life
  • Studying the Relationship Between Temperature and Ocean Acidification
  • Exploring the Effects of Deforestation on Local Ecosystems
  • Investigating the Factors Contributing to Soil Erosion in a Watershed
  • Analyzing the Impact of Noise Pollution on Wildlife Behavior
  • Studying the Relationship Between Temperature and Ice Melt Rates
  • Investigating the Effect of Urbanization on Local Bird Populations
  • Exploring the Impact of Air Pollution on Human Health in Urban Areas
  • Analyzing the Biodiversity of Insects in Urban vs. Rural Environments

Social Sciences

  • Analyzing the Impact of Social Media Use on Teenagers’ Mental Health
  • Investigating the Factors Influencing Online Shopping Behavior
  • Studying the Effects of Different Teaching Methods on Student Engagement
  • Analyzing the Impact of Parenting Styles on Children’s Academic Performance
  • Investigating the Relationship Between Music Preferences and Stress Levels
  • Exploring the Factors Contributing to Workplace Stress and Burnout
  • Studying the Effects of Socioeconomic Status on Access to Healthcare
  • Analyzing the Factors Influencing Voting Behavior in Local Elections
  • Investigating the Impact of Advertising on Consumer Purchasing Decisions
  • Exploring the Effects of Cultural Diversity on Team Performance in the Workplace

These SIP topics offer a wide range of research opportunities for students in biology, chemistry, physics, and environmental science. Students can choose topics that align with their interests and contribute to their understanding of the natural world.

Conducting Your SIP

So, you’ve picked an exciting Science Investigatory Project (SIP) topic and you’re all set to dive into the world of scientific exploration. But how do you go from a brilliant idea to conducting your own experiments? Let’s break it down into easy steps:

Step 1: Dive into Research

Before you start mixing chemicals or setting up experiments, it’s time for some detective work. Dive into research! What’s already out there about your topic? Books, articles, websites – explore them all. This background study gives you the superpower of knowledge before you even start.

Step 2: Hypothesize Away!

With all that newfound wisdom, formulate a hypothesis. Don your scientist’s hat and make an educated guess about what you think will happen during your experiments. It’s like making a bet with science itself!

Step 3: Time for Action

Now comes the fun part. Design your experiments. What materials do you need? What steps should you follow? Imagine you’re a mad scientist with a plan! Then, go ahead and conduct your experiments. Be precise, follow your plan, and observe like Sherlock.

Step 4: Collect That Data

During your experiments, be a data ninja. Record everything. Measurements, observations, weird surprises – they’re all clues! The more detailed your notes, the better.

Step 5: Decode Your Findings

Time to put on your detective’s hat again. What do your data and observations tell you? Look for patterns, anomalies, and secrets your experiments are revealing. This is where the real magic happens.

Step 6: The Big Reveal

Now, reveal the grand finale – your conclusions! Did your experiments support your hypothesis, or did they throw you a curveball? Discuss what your findings mean and why they matter. It’s like solving the mystery in a thrilling novel.

Step 7: Your SIP Report

Finally, put it all together in your SIP report. Think of it as your scientific storybook. Share your journey with the world. Start with the introduction, add in your methodology, sprinkle your results and discussions, and wrap it up with a conclusion that leaves your readers in awe.

Remember, this isn’t just about science; it’s about your adventure in discovering the unknown. Have fun, be curious, and let your inner scientist shine!

What is a good topic for an investigatory project?

A good topic for an investigatory project depends on your interests and the resources available to you. Here are some broad categories and potential topics to consider:

  • The Impact of Different Fertilizers on Plant Growth
  • Investigating the Effect of Air Pollution on Local Plant Life
  • Analyzing the Quality of Drinking Water from Various Sources
  • Studying the Growth of Microorganisms in Different Water Types
  • Creating Biodegradable Plastics from Natural Materials
  • Investigating the Chemical Composition of Household Cleaning Products
  • Analyzing the Effects of Different Cooking Oils on Food Nutrition
  • Testing the pH Levels of Various Household Substances
  • Studying the Behavior of Ants in Response to Different Food Types
  • Investigating the Impact of Light Exposure on Seed Germination
  • Analyzing the Effects of Different Music Types on Plant Growth
  • Designing and Testing a Simple Wind Turbine
  • Investigating the Relationship Between Temperature and Electrical Conductivity in Materials
  • Studying the Behavior of Different Types of Pendulums
  • Analyzing the Factors Affecting the Efficiency of Solar Panels
  • Analyzing the Impact of Social Media Use on Teenagers’ Sleep Patterns
  • Investigating the Factors Influencing Consumer Behavior in Online Shopping
  • Studying the Effects of Different Teaching Methods on Student Learning
  • Analyzing the Relationship Between Music Preferences and Mood

Computer Science and Technology

  • Developing a Smartphone App for Personal Productivity
  • Investigating the Factors Affecting Wi-Fi Signal Strength in Different Locations
  • Analyzing the Impact of Screen Time on Productivity and Well-being
  • Studying the Efficiency of Different Coding Languages in Software Development

When choosing a topic, consider your interests, available resources, and the potential impact of your project. It’s essential to select a topic that excites you and allows you to conduct meaningful research.

Additionally, check with your school or instructor for any specific guidelines or requirements for your investigatory project.

:

What should I do in a science investigatory project?

So, you’re all set to embark on a thrilling adventure known as a Science Investigatory Project (SIP). But where do you start, and what should you be doing? Here’s your guide to diving headfirst into the world of scientific exploration:

Choose a Topic That Sparks Your Interest

Begin by picking a topic that genuinely excites you. It should be something you’re curious about, like “Why do plants grow towards the light?” or “How does pollution affect local water quality?”

Unleash Your Inner Detective with Background Research

Dive into the world of books, articles, and online resources. Learn everything you can about your chosen topic. It’s like gathering clues to solve a mystery.

Craft Your Hypothesis – Your Educated Guess

Formulate a hypothesis. Think of it as your scientific prediction. What do you think will happen when you investigate your question? Make an educated guess and write it down.

Plan Your Scientific Experiments

Now, let’s get hands-on! Plan your experiments. What materials will you need? What steps will you follow? Imagine you’re a mad scientist with a plan to uncover the secrets of the universe!

Collect Data – Be a Data Ninja

During your experiments, be a data ninja! Record everything meticulously. Measurements, observations, quirky surprises – they’re all part of your data treasure trove.

Decode Your Findings – Be a Scientific Sleuth

Time to decode the clues! Analyze your data like a scientific sleuth. Look for patterns, unexpected twists, and, most importantly, what your experiments are trying to tell you.

Share Your Scientific Tale: The SIP Report

It’s time to tell your scientific tale. Create your SIP report – your storybook of science. Start with the introduction, add in your experiments, sprinkle with results, and wrap it up with a conclusion that leaves your readers in awe.

Share Your Discoveries with the World

If you can, share your SIP findings. Present your work to your classmates, at science fairs, or anywhere you can. Share your excitement about science with the world!

Remember, SIP isn’t just about following steps; it’s about your adventure in discovering the mysteries of the universe. So, stay curious, have fun, and let your inner scientist shine!

What are the best topics for investigatory project chemistry class 12?

Hey there, future chemists! It’s time to explore the fascinating world of Chemistry with some class 12 investigatory project ideas that will not only challenge your scientific skills but also pique your curiosity:

Water Wizardry

Dive into the world of H2O and analyze water samples from different sources – tap water, well water, and that bottled stuff. Let’s uncover the secrets of your hydration!

Biodiesel Bonanza

Ever wondered if you could turn cooking oil into fuel? Investigate the synthesis of biodiesel from everyday vegetable oils, and let’s see if we can power the future with French fries!

Vitamin C Showdown

Put on your lab coat and determine the vitamin C content in various fruit juices. Is your morning OJ really packed with vitamin C? Let’s find out!

Race Against Time – The Iodine Clock

Get ready to race time itself! Study the kinetics of the iodine clock reaction and see how factors like concentration and temperature affect this chemistry marvel.

Shampoo Chemistry

Let’s turn your shower into a science lab! Test the pH levels of different shampoos – are they gentle or are they acidic? Your hair deserves the best!

Heavy Metal Detectives

Investigate soils for heavy metals. Are there hidden dangers lurking beneath our feet? Let’s discover the truth and protect the environment.

Metal Makeover

Ever dreamed of turning ordinary objects into shimmering treasures? Electroplate items like coins or jewelry with various metals and unveil their magical transformations!

The Dye Chronicles

Explore the vibrant world of food dyes used in your favorite treats. What’s really behind those bright colors? Let’s uncover the secrets of our rainbow foods!

Solubility Sleuths

Unravel the mysteries of solubility! How does temperature impact the solubility of common salts? Let’s dissolve some science questions.

Perfume Alchemy

Dive into the world of fragrances! Analyze the chemical components in different perfumes and discover the magic behind your favorite scents.

Remember, the best project is one that not only challenges you but also stirs your scientific curiosity. Choose a topic that excites you, and let your chemistry adventure begin!

What are good science experiment ideas?

  • Light Dance with Plants: Imagine plants swaying to the rhythm of light! Explore how different types of light affect plant growth – from disco-like colorful LEDs to the soothing glow of natural sunlight.
  • Kitchen Warriors: Don your lab coat and investigate everyday kitchen items like garlic, honey, and vinegar as germ-fighting superheroes. Who knew your kitchen could be a battleground for bacteria?
  • Animal Extravaganza: Dive into the world of critters! Observe and report on the curious behaviors of your chosen animal buddies. It’s like being a wildlife detective in your own backyard.
  • Fizz, Pop, and Bang: Get ready for some explosive fun! Experiment with classic chemical reactions that sizzle and explode, like the volcanic eruption of baking soda and vinegar.
  • Titration Showdown: Become a master of precision with acid-base titration. Unlock the secrets of unknown solutions, like a chemistry detective solving mysteries.
  • Crystal Kingdom: Step into the magical world of crystals. Grow your own dazzling crystals and reveal how factors like temperature and concentration influence their growth.
  • Swingin’ Pendulums: Swing into action with pendulums! Investigate how factors like pendulum length and mass affect the way they sway. It’s like dancing with physics.
  • Machine Marvels: Enter the world of simple machines. Uncover the mechanical magic behind levers, pulleys, and inclined planes as you lift heavy objects with ease.
  • Electromagnet Madness: Get electrified! Build your own electromagnet and experiment with coils and currents to see how they shape magnetic fields.
  • Water Adventure: Dive into water quality testing. Collect samples from different sources and become a water detective, searching for clues about pollution and health.
  • Air Expedition: Take to the skies with your own air quality station. Discover what’s floating in the air around you, from tiny particles to invisible gases.
  • Climate Crusaders: Join the battle against climate change. Investigate how shifts in temperature and precipitation patterns impact your local ecosystem.

Earth Science

  • Rock Detectives: Grab your magnifying glass and investigate rocks and fossils in your area. It’s like traveling through time to uncover Earth’s ancient secrets.
  • Weather Watchers: Become a meteorologist with your own weather station. Predict the weather and marvel at how the atmosphere behaves around you.
  • Volcano Eruption Spectacle: Get ready for volcanic eruptions without the lava! Create a stunning volcano model and watch it come to life with your own eruptions.
  • Starry Nights: Explore the cosmos with a telescope and discover celestial wonders, from the rings of Saturn to the galaxies far, far away.
  • Moon Phases Odyssey: Join the lunar calendar club! Track the Moon’s different faces over weeks and become an expert on lunar phases.
  • Solar Eclipse Spectacle: Witness the sky’s ultimate blockbuster – a solar eclipse! Safely observe this cosmic dance with eclipse glasses and telescopes.

These science experiments are not just about learning; they’re about unleashing your inner scientist and having a blast along the way! So, pick your favorite, put on your lab coat, and let the science adventures begin!

In wrapping up our exploration of Science Investigatory Project (SIP) topics, it’s clear that we’ve uncovered a treasure trove of possibilities. These topics are more than just words on a page; they’re gateways to adventure, inquiry, and understanding.

We’ve ventured into diverse realms of science, from the secrets of plant life to the hidden chemistry of everyday items. We’ve danced with the laws of physics, delved into environmental enigmas, and probed the complexities of human behavior. These topics aren’t just ideas; they’re invitations to explore the wonders of our world.

So, as you consider your own SIP journey, let your curiosity be your compass. Pick a topic that truly intrigues you, one that keeps you awake at night with questions. Embrace the process – the experiments, the surprises, and the “Aha!” moments.

Remember, it’s not just about reaching a conclusion; it’s about the exhilarating path you take to get there. SIPs are your chance to be a scientist, an explorer, and a storyteller all at once. So, go ahead, choose your topic, embark on your adventure, and share your discoveries with the world. Science is waiting for your curiosity to light the way!

Frequently Asked Questions

1. how long does it typically take to complete a science investigatory project, the duration of an sip varies, but it generally spans a few months to a year, depending on the complexity of the topic and available resources., 2. can i work on an sip alone, or is it better to collaborate with classmates, you can choose to work on an sip individually or in a group. both approaches have their advantages, so it depends on your preference and the project’s requirements., 3. are there any age restrictions for participating in sips, sips are typically undertaken by students in middle school and high school, but there are no strict age restrictions. anyone with a passion for scientific inquiry can engage in an sip., 4. how can i find a mentor or advisor for my sip, you can seek guidance from science teachers, professors, or professionals in your chosen field. they can provide valuable insights and support throughout your sip journey., 5. where can i showcase my sip findings, you can present your sip findings at science fairs, school exhibitions, or even submit them to relevant scientific journals or conferences for broader recognition..

  • australia (2)
  • duolingo (13)
  • Education (284)
  • General (77)
  • How To (18)
  • IELTS (127)
  • Latest Updates (162)
  • Malta Visa (6)
  • Permanent residency (1)
  • Programming (31)
  • Scholarship (1)
  • Sponsored (4)
  • Study Abroad (187)
  • Technology (12)
  • work permit (8)

Recent Posts

Top 10 Colleges For Study Abroad For Indian Students

Best Project Ideas

211+ Science Fair Project Ideas For High School Students

September 20, 2024

Science Fair Project Ideas For High School

High school students, get ready for exciting science! Science fair projects let you explore cool ideas and discover new things. You can build robots, grow crystals, or invent useful things. These projects are fun and help you learn a lot. They show how smart you are and help you solve problems. Science fairs are a great way to learn more about the world around us. So put on your thinking cap and prepare to create something awesome for your science fair project!

Must Read: Top 20 Comic Project Ideas for Students 2024

Table of Contents

How Do I Choose A Topic For A Science Fair Project?

When picking a science fair project, think about these things :

  • Pick a topic you’re curious about.
  • Ensure you have enough time, tools, and skills to finish the project.
  • Try to find a new or different way to explore your topic.
  • Choose a topic where you can create and test a hypothesis.
  • Make sure the project matches your learning level.
  • Stay away from risky materials or activities.
  • Think about current science topics or local environmental issues.
  • Pick a project you can complete before the deadline.

To narrow down your ideas:

  • List the science topics you enjoy.
  • Research current issues in those topics.
  • Brainstorm questions you want to answer.
  • Think about the materials you have.
  • Talk about your ideas with your teacher or parents.

Science Fair Project Ideas For High School Students

List of fantastic science fair project ideas for high school students across various categories:

  • How plants grow in space
  • Bacteria in different water sources
  • Effects of music on plant growth
  • Animal behavior in different light conditions
  • Mold growth on various foods
  • Impact of pollution on local ecosystems
  • Fruit fly genetics and inheritance patterns
  • Heart rate changes during exercise
  • Effects of caffeine on memory
  • Plant growth with different fertilizers
  • Comparing human and animal DNA
  • Microplastics in marine life samples
  • Effects of sleep on test performance
  • Bird migration patterns in your area
  • Impact of temperature on enzyme activity
  • Antibiotic resistance in common bacteria
  • Effects of video games on reflexes
  • Plant growth in different colored light
  • Soil composition and plant health
  • Effects of stress on the immune system
  • Making biodegradable plastic from plants
  • Comparing the effectiveness of cleaning products
  • Acid rain effects on plant growth
  • Creating natural dyes from plants
  • Electrolysis of different salt solutions
  • Density of various liquids experiment
  • Making a battery from fruit
  • Crystal growth under different conditions
  • Comparing antacids for stomach acid relief
  • Extracting DNA from various fruits
  • Making soap from natural ingredients
  • Comparing water quality from different sources
  • Rust formation on different metals
  • Making invisible ink with household items
  • Comparing different types of sunscreen
  • Creating a homemade lava lamp
  • Testing pH levels of standard drinks
  • Making a simple water filter
  • Comparing different types of fire extinguishers
  • Creating your chemical garden
  • Building a simple electric motor
  • Measuring sound insulation of materials
  • Creating a homemade wind turbine
  • Testing aerodynamics of different shapes
  • Building a solar-powered oven
  • Comparing the efficiency of light bulbs
  • Making a working hydraulic arm
  • Testing the strength of different bridges
  • Creating a homemade seismograph
  • Measuring friction on different surfaces
  • Building a simple spectroscope
  • Testing water pressure at different depths
  • Creating a pinhole camera
  • Comparing different types of insulation
  • Making a working hovercraft model
  • Testing magnetism of various materials
  • Building a simple electric generator
  • Comparing bounce heights of different balls
  • Creating a homemade thermometer
  • Testing sound travel through materials

Earth Science:

  • Measuring erosion in local streams
  • Creating a model of plate tectonics
  • Testing soil pH in different areas
  • Building a working weather station
  • Comparing different types of rocks
  • Creating a model of the water cycle
  • Testing air quality in your area
  • Building a working volcano model
  • Comparing different types of clouds
  • Creating a model of ocean currents
  • Testing the porosity of different soils
  • Building a working earthquake-resistant structure
  • Comparing different types of fossils
  • Creating a model of the greenhouse effect
  • Testing the effects of acid rain
  • Building a working solar still
  • Comparing different kinds of minerals
  • Creating a model of a watershed
  • Testing the impact of deforestation
  • Building a working wind vane

Environmental Science:

  • Testing the biodegradability of different materials
  • Comparing the energy efficiency of appliances
  • Creating a composting system
  • Testing air pollution levels in your area
  • Comparing the effectiveness of recycling methods
  • Creating a rainwater collection system
  • Testing effects of oil spills
  • Comparing different types of renewable energy
  • Creating a vertical garden system
  • Testing the effectiveness of natural pesticides
  • Comparing carbon footprints of activities
  • Creating a greywater recycling system
  • Testing effects of invasive species
  • Comparing different types of eco-friendly packaging
  • Creating a model of a sustainable city
  • Testing the effectiveness of water conservation methods
  • Comparing different types of biofuels
  • Creating a small-scale aquaponics system
  • Testing effects of light pollution
  • Comparing different types of solar panels
  • Building a working telescope
  • Tracking sunspots over time
  • Creating a scale model solar system
  • Measuring light pollution in your area
  • Building a working sundial
  • Tracking moon phases and tides
  • Creating a star map of constellations
  • Measuring asteroid impacts on the moon’s surface
  • Building a working planetarium projector
  • Tracking planetary movements over time

Computer Science:

  • Creating a simple chatbot program
  • Building a basic website
  • Developing a mobile app
  • Creating a simple computer game
  • Building a basic encryption program
  • Developing an image recognition program
  • Creating a simple weather prediction algorithm
  • Building a basic network security system
  • Developing a voice recognition program
  • Creating a simple artificial intelligence program

Mathematics:

  • Exploring fractals in nature
  • Analyzing traffic patterns using statistics
  • Creating a mathematical model of population growth
  • Exploring the golden ratio in art
  • Analyzing probability in card games
  • Creating a mathematical model of disease spread
  • Exploring patterns in prime numbers
  • Analyzing the efficiency of different sorting algorithms
  • Creating a mathematical model of climate change
  • Exploring geometry in architecture

Psychology:

  • Testing effects of color on mood
  • Analyzing decision-making in different scenarios
  • Testing memory recall techniques
  • Analyzing the impact of social media usage
  • Testing perception of time in activities
  • Analyzing the effects of multitasking on performance
  • Testing the effectiveness of study techniques
  • Analyzing the effects of music on concentration
  • Testing perception of optical illusions
  • Analyzing the effects of praise on motivation
  • Building a line-following robot
  • Creating a robotic arm
  • Developing an obstacle-avoiding robot
  • Building a solar-powered robot
  • Creating a robot that sorts objects
  • Developing a robot that draws
  • Building a robot that climbs stairs
  • Creating a robot that plays music
  • Developing a robot that solves puzzles
  • Building a robot that plants seeds

Microbiology:

  • Testing the effectiveness of hand sanitizers
  • Analyzing bacteria growth on money
  • Testing antibiotic resistance in soil bacteria
  • Analyzing microbes in different ecosystems
  • Testing effects of probiotics on digestion
  • Analyzing bacteria in different types of milk
  • Testing effects of natural antibiotics
  • Analyzing microbes in fermented foods
  • Testing effects of UV light on bacteria
  • Analyzing bacteria in different water sources
  • Analyzing genetic traits in families
  • Testing for GMOs in food products
  • Analyzing DNA extraction methods
  • Testing for genetic markers in plants
  • Analyzing inheritance patterns in pets
  • Testing effects of mutations on bacteria
  • Analyzing genetic diversity in populations
  • Testing for genetic modifications in crops
  • Analyzing epigenetic changes in plants
  • Testing for genetic resistance in insects

Neuroscience:

  • Testing effects of meditation on brainwaves
  • Analyzing reaction times to different stimuli
  • Testing effects of sleep deprivation
  • Analyzing brain lateralization in tasks
  • Testing effects of music on brain activity
  • Analyzing decision-making in moral dilemmas
  • Testing effects of exercise on cognition
  • Analyzing learning styles and memory
  • Testing effects of scents on mood
  • Analyzing brain plasticity in learning

Biochemistry:

  • Testing enzyme activity in different conditions
  • Analyzing protein denaturation in cooking
  • Testing effects of pH on digestion
  • Analyzing vitamin C content in foods
  • Testing effects of temperature on fermentation
  • Analyzing lipid content in different diets
  • Testing effects of antioxidants on oxidation
  • Analyzing glucose levels after meals
  • Testing effects of preservatives on food
  • Analyzing hormone levels in plants
  • Analyzing animal behavior in crowds
  • Testing effects of artificial light on insects
  • Analyzing camouflage effectiveness in animals
  • Testing Effects of diet on Pet Health
  • Analyzing communication patterns in ants
  • Testing effects of noise on wildlife
  • Analyzing migration patterns of local birds
  • Testing effects of habitat loss simulation
  • Analyzing social structures in fish schools
  • Testing effects of pheromones on insects
  • Analyzing the effects of music on plant growth
  • Testing germination rates of different seeds
  • Analyzing phototropism in different plants
  • Testing effects of colored water on flowers
  • Analyzing allelopathy between plant species
  • Testing effects of different soils on growth
  • Analyzing transpiration rates in plants
  • Testing effects of pruning on plant growth
  • Analyzing seed dispersal mechanisms
  • Testing effects of gravity on root growth

Oceanography:

  • Analyzing the effects of temperature on water density
  • Testing effects of oil on marine life
  • Analyzing ocean acidification with shells
  • Testing effects of salinity on buoyancy
  • Analyzing marine debris in local waters
  • Testing effects of pollution on coral
  • Analyzing bioluminescence in marine organisms
  • Testing effects of currents on dispersal
  • Analyzing wave patterns and beach erosion
  • Testing effects of depth on water pressure

Meteorology:

  • Analyzing cloud formation in a bottle
  • Testing effects of pressure on boiling point
  • Analyzing the formation of tornadoes in jars
  • Testing effects of altitude on temperature
  • Analyzing dew point and relative humidity
  • Testing effects of wind on evaporation
  • Analyzing air pressure with crushing cans
  • Testing effects of land and water heating
  • Analyzing the formation of fog in jars
  • Testing effects of pollution on rainfall
  • Analyzing lightning formation with static electricity

Winning science fair projects for high school

  • Developing a machine learning algorithm to detect early signs of plant diseases.
  • Investigating the effects of microplastics on aquatic ecosystems.
  • Creating a low-cost water purification system using locally available materials.
  • Studying the impact of different light wavelengths on plant growth and nutrition.
  • Designing and testing a new method for capturing atmospheric carbon dioxide.
  • Analyzing the effectiveness of natural vs. synthetic antibiotics on resistant bacteria.
  • Developing a smartphone app for early detection of skin cancer.
  • Investigating CRISPR gene editing to fight crop diseases.
  • Creating and testing biodegradable alternatives to common plastics.
  • Studying social media effects on teenage mental health and sleep patterns.

National winning science fair projects

  • Developing an AI-powered prosthetic hand with improved sensory feedback.
  • Creating a method to detect Alzheimer’s early using eye tracking.
  • Designing a low-cost, portable device for quick diagnosis of infectious diseases.
  • Using genetically modified bacteria to clean up oil spills.
  • Developing a new technique for eco-friendly removal of space debris.
  • Creating an algorithm to predict and prevent power grid failures.
  • Studying gut bacteria for its potential to combat obesity.
  • Designing a solar-powered system to collect water from the air in dry regions.
  • Investigating nanoparticles for targeted cancer treatment.
  • Developing a method to convert plastic waste into fuel.

Last-minute science fair projects for high school

  • Comparing homemade and commercial cleaning products for effectiveness.
  • Testing how music genres affect plant growth.
  • Investigating temperature’s effect on battery life.
  • Analyzing the link between social media usage and academic performance.
  • Testing natural methods for water purification.
  • Comparing insulation properties of household materials.
  • Investigating how light colors affect reaction times.
  • Testing different methods for removing stains from fabric.
  • Analyzing caffeine’s effect on memory and focus.
  • Investigating the effect of cooking methods on vitamin content in vegetables.

These project ideas range from complex, long-term topics to simple, quick experiments. A successful science fair project isn’t just about the idea—it’s about your experimental design, data collection, analysis, and presentation. 

For last-minute projects, focus on topics that are easy to complete using available materials but add a unique spin to make them stand out.

Science Fair Ideas for 8th Grade

Biology and Life Science

  • Plant Growth Experiment : Test how different factors like light, water, or nutrients affect plant growth.
  • Microorganism Culture : Grow bacteria or fungi in various environments to observe their behavior.
  • Genetic Inheritance : Study traits in plants or animals to learn how genetics are passed down.
  • Enzyme Activity : Test how temperature, pH, or substrate concentration affect how enzymes work.
  • Photosynthesis : Measure photosynthesis rates in plants under different conditions.

Chemistry 6. Crystal Formation : Grow crystals using different substances and observe their shapes and sizes. 7. Acid-Base Titration : Use titration to find the concentration of an unknown acid or base. 8. Electrolysis of Water : Split water into hydrogen and oxygen gases using an electric current. 9. Polymer Synthesis : Create polymers from different materials and study their properties. 10. Chromatography : Use chromatography to separate components of a mixture.

Science Fair Ideas for 7th Grade

  • Simple Machines : Investigate how different simple machines like levers and pulleys work.
  • Electricity and Circuits : Build circuits to study how voltage, current, and resistance relate.
  • Sound Waves : Experiment with sound waves to understand their properties.
  • Motion and Forces : Study motion laws and see how forces affect objects.
  • Light and Optics : Explore how light works, including reflection and refraction.

Earth and Environmental Science 6. Water Filtration : Test materials to see how well they filter water. 7. Soil Erosion : Study what causes soil erosion and find ways to prevent it. 8. Weather Patterns : Study the weather in your area and figure out what causes changes. 9. Mineral Identification : Identify minerals based on their physical traits. 10. Renewable Energy : Explore renewable energy sources and how they can be used.

Must Read: 201+ Engaging Ancient Egypt Project Ideas for Students

Science fair project ideas for high school students can lead to exciting futures. These projects help teens discover their interests and maybe even their future careers. By doing hands-on experiments, students learn to think like real scientists. 

They get better at solving problems and explaining their ideas. Science fairs also look great on college applications. Some students might even win prizes or scholarships for their work.

The skills learned from science projects can be used in many parts of life, not just in science class. So, high schoolers, dive into your projects with excitement. Your next experiment could lead to something big!

science experiments decorations

I am a creative professional with over 5 years of experience in coming up with project ideas. I'm great at brainstorming, doing market research, and analyzing what’s possible to develop innovative and impactful projects. I also excel in collaborating with teams, managing project timelines, and ensuring that every idea turns into a successful outcome. Let's work together to make your next project a success!

Top 20 Comic Project Ideas for Students 2024

111+ creative breaking social norms project ideas for students.

Top 10 Science Project Ideas for Class 9

Are you looking for exciting and innovative  science experiment ideas for 9th grade  that will spark your students' curiosity and help them learn? Look no further! We've compiled a list of the best  science project topics for 9th graders  that are perfect for  class 9 science project examples , whether you're a beginner or an experienced science enthusiast. These  creative science project ideas for high school  are designed to be  easy science experiments for 9th grade students  that are both  fun science activities for 9th grade  and  educational science projects for high school students . From  hands-on science projects for class 9  to  innovative science projects for high school , we've got you covered. Get ready to dive into the world of science and explore the fascinating phenomena that surround us every day. With these  class 9 science project ideas for beginners , you'll have the opportunity to learn and grow while having a blast in the process.

Science projects are an excellent way for Class 9 students to explore scientific concepts in a fun and hands-on manner. Whether you're looking for easy experiments, innovative ideas, or creative activities, this guide will help you find exciting science projects that are both educational and engaging. Here are ten science project ideas perfect for 9th graders:

1. Homemade Volcano

Description A homemade volcano is a classic science experiment that demonstrates a chemical reaction. By mixing common kitchen ingredients, students can create a dramatic volcanic eruption. Materials

  • Baking soda
  • Red food coloring (optional)
  • Container (to act as the volcano)
  • Tray (to contain the mess)
  • Mix baking soda with red food coloring and dish soap in the container.
  • Pour vinegar into the container and watch the eruption.

This project is a great example of easy science experiments for 9th grade students, offering a simple yet impressive demonstration of chemical reactions.

2. Solar System Model

Description Building a scale model of the solar system helps students understand the relative sizes and distances of planets. This project uses various Materials to create a visual representation of our solar system. Materials

  • Styrofoam balls
  • Paints and brushes
  • Paint each Styrofoam ball to represent a planet.
  • Arrange the planets on a string to display their relative distances.

This is one of the best science project topics for 9th graders, combining creativity with learning about our solar system.

3. Homemade Water Filter

Description Creating a homemade water filter shows how water filtration works using Materials you can find at home. This project helps students understand the process of cleaning water. Materials

  • Plastic bottle
  • Activated charcoal
  • Coffee filter
  • Cut the bottom off the plastic bottle and place a coffee filter in the neck.
  • Layer sand, gravel, and charcoal in the bottle.
  • Pour dirty water through the filter and observe the resolts.

This project is ideal for hands-on science projects for Class 9, as it combines practical skills with scientific concepts.

4. Plant Growth Under Different Light Conditions

Description This project explores how different types of light affect plant growth. It demonstrates the role of light in photosynthesis and plant health. Materials

  • Plant seeds (e.g., beans)
  • Different light sources (e.g., sunlight, LED, fluorescent)
  • Plant seeds in pots with soil.
  • Place each pot under different light sources.
  • Measure and record the growth of the plants over time.

This is a great example of innovative science projects for high school, allowing students to experiment with light and plant growth.

5. Homemade Battery

Description Creating a simple battery from everyday items shows how chemical reactions can generate electricity. This project demonstrates basic principles of electronics. Materials

  • Copper coins
  • Lemon or vinegar
  • Insert the copper coin and zinc nail into a lemon.
  • Connect wires to the coin and nail.
  • Attach the wires to an LED light and observe it light up.

This project highlights how to incorporate educational science projects for high school students into everyday life.

6. Sound Wave Visualization

Description Visualizing sound waves is a fun and interactive way to understand how sound travels. This project uses simple Materials to show how sound can be observed. Materials

  • Plastic wrap
  • Rice or salt
  • Cover a container with plastic wrap.
  • Place rice or salt on the plastic wrap.
  • Play sound through the speaker and observe the movement of the rice or salt.

This project falls under the category of fun science activities for 9th grade, offering an engaging way to learn about sound waves.

7. Density Column

Description A density column experiment helps students observe how different liquids layer based on their density. This project is an excellent way to demonstrate the concept of density. Materials

  • Various liquids (e.g., honey, water, oil)
  • Food coloring
  • Transparent container
  • Slowly pour each liquid into the container.
  • Observe how the liquids form distinct layers based on density.

This is a good example of creative science project ideas for high school, providing a visual and hands-on way to understand density.

8. Growing Crystals

Description Growing crystals from a supersaturated solution allows students to explore the process of crystallization. This project demonstrates how crystals form and grow. Materials

  • Salt or sugar
  • Dissolve salt or sugar in hot water until no more dissolves.
  • Pour the solution into a jar.
  • Hang a string from the pencil and place it in the jar.
  • Observe crystal formation over time.

This project is an example of easy science experiments for 9th grade students that can be completed with minimal Materials .

9. Electromagnetic Train

Description Building an electromagnetic train is an exciting way to learn about magnetic fields and electric currents. This project demonstrates basic principles of electromagnetism. Materials

  • Copper wire
  • Paper clips
  • Create a coil with the copper wire.
  • Place the coil on top of the magnets.
  • Connect the wire to the battery and observe the coil moving.

This is a perfect example of hands-on science projects for Class 9, combining practical skills with scientific learning.

10. Invisible Ink

Description Creating and revealing invisible ink is a fun project that combines science with a bit of magic. Students learn about chemical reactions and how they can be used to create hidden messages. Materials

  • Lemon juice or baking soda solution
  • Cotton swabs
  • Heat source (e.g., lamp)
  • Write a message on paper using lemon juice or baking soda solution.
  • Let it dry.
  • Reveal the message by heating the paper.

This project showcases innovative science projects for high school students and offers a creative way to learn about chemical reactions.

FAQs on Science Project Ideas for Class 9

1. What are some easy science projects for 9th graders?

Easy science projects for 9th graders include making a homemade volcano, growing crystals, or creating a density column. These projects use common materials and are straightforward to execute.

2. How can I make a science project more innovative?

To make a science project more innovative, try combining different scientific principles or adding a unique twist. For example, using different light sources for plant growth or designing a creative model of the solar system can make the project stand out.

3. What are some fun science activities for 9th grade?

Fun science activities for 9th grade include making a sound wave visualization, creating an electromagnetic train, or using invisible ink. These activities are interactive and engaging, making science enjoyable.

4. Can I do science projects without special equipment?

Yes, many science projects can be done with household items or inexpensive materials. For instance, making a homemade battery or a water filter uses common items like lemons, copper coins, and sand.

5. How can I choose the best science project for my class?

Choose a science project based on your interests and the materials you have available. Consider the complexity of the project and how well it aligns with your curriculum. Simple projects like a homemade volcano or a density column can be great starting points.

By choosing any of these top 10 science project ideas, you can create an engaging and educational experience that makes learning science enjoyable and memorable.

Frequently Asked Questions on Top 10 Science Project Ideas for Class 9

What are the top 10 science project ideas for class 9 students.

For Class 9 students seeking engaging and educational science projects, some top ideas include creating a model of the solar system, building a simple electromagnet, experimenting with chemical reactions like the volcano eruption model, and constructing a water purification system using natural materials. Other exciting projects include exploring the principles of magnetism with homemade compasses, demonstrating the effects of acid rain on plant growth, and building a working model of the human circulatory system. These projects not only enhance understanding of scientific concepts but also develop practical skills in experimentation and presentation.

How Do I Choose the Right Science Project for Class 9?

Choosing the right science project for Class 9 involves selecting a topic that interests you and aligns with your current curriculum. Consider projects that are feasible with the resources you have and can be completed within the time frame available. Start by identifying your interests—whether in physics, chemistry, biology, or environmental science—and look for project ideas that allow you to explore these areas. Ensure the project is challenging yet manageable, and check that it adheres to any guidelines or requirements set by your school. Research thoroughly and plan each step to ensure a successful outcome.

What Are the Benefits of Working on a Science Project in Class 9?

Engaging in a science project in Class 9 provides numerous educational benefits. It enhances your understanding of scientific principles through hands-on experience, fosters critical thinking and problem-solving skills, and encourages creativity in applying theoretical knowledge to practical situations. Science projects also improve research abilities and presentation skills, which are valuable for academic and future career success. Additionally, successfully completing a project can boost confidence, provide opportunities for recognition in science fairs or competitions, and spark a deeper interest in pursuing science-related fields in higher education.

Recent Blogs

  • What is Mathematical Olympiads?  
  • Indian Air Force Group X and Y Exam  
  • Difference between CSIR NET and UGC NET  
  • India Post GDS Recruitment 2025  
  • MAH MBA Exam  
  • MP TET 2022 Exam  
  • Top MBA Colleges in India  
  • MCQ on On the Trail of the Earliest People  
  • Roles of Tutoring and Tuitions  
  • Why you need a good Tutor  
  • Online teaching: The role of parents  
  • Technology with traditional teaching?  
  • How to maximize your child’s potential?  
  • How to reduce stress?  
  • What makes a good tutor?  

Join Thousand of Happy Students!

Subscribe our newsletter & get latest news and updation!

  • Grades 6-12
  • School Leaders

Teach students checking vs. savings accounts!

Every product is independently selected by (obsessive) editors. Things you buy through our links may earn us a commission.

45 Cool Chemistry Experiments, Demos, and Science Fair Projects

Don’t forget your safety equipment!

Chemistry experiments including using cabbage to test pH and breaking apart covalent bonds

Bunsen burners, colorful chemicals, and the possibility of a (controlled) explosion or two? Everybody loves chemistry experiments! We’ve rounded up the best activities, demos, and chemistry science fair projects for kids and teens. Try them in the classroom or at home.

Easy Chemistry Experiments and Activities for All Ages

Chemistry science fair projects.

These chemistry experiments and activities are all easy to do using simple supplies you probably already have. Families can try them at home, or teachers and students can do them together in the classroom.

Mix up some magic milk

Kids love this colorful experiment, which explores the concept of surface tension. This is one of our favorite chemistry experiments to try at home, since the supplies are so basic and the results are so cool!

Skittles form a circle around a plate. The colors are bleeding toward the center of the plate. (easy science experiments)

Taste the Rainbow

Teach your students about diffusion while creating a beautiful and tasty rainbow. You’ll definitely want to have extra Skittles on hand so your class can enjoy a few as well!

Learn more: Skittles Diffusion

Colorful rock candy on wooden sticks

Crystallize sweet treats

Crystal science experiments teach kids about supersaturated solutions. This one is easy to do at home, and the results are absolutely delicious!

Learn more: Candy Crystals

Make elephant-sized toothpaste

This fun project uses yeast and a hydrogen peroxide solution to create overflowing “elephant toothpaste.” You can also add an extra fun layer by having kids create toothpaste wrappers for their plastic bottles.

Girl making an enormous bubble with string and wire

Blow the biggest bubbles you can

Add a few simple ingredients to dish soap solution to create the largest bubbles you’ve ever seen! Kids learn about surface tension as they engineer these bubble-blowing wands.

Learn more: Giant Soap Bubbles

Plastic bag full of water with pencils stuck through it

Demonstrate the “magic” leakproof bag

So simple and so amazing! All you need is a zip-top plastic bag, sharp pencils, and some water to blow your kids’ minds. Once they’re suitably impressed, teach them how the “trick” works by explaining the chemistry of polymers.

Learn more: Leakproof Bag

Several apple slices are shown on a clear plate. There are cards that label what they have been immersed in (including salt water, sugar water, etc.) (easy science experiments)

Use apple slices to learn about oxidation

Have students make predictions about what will happen to apple slices when immersed in different liquids, then put those predictions to the test! Finally, have them record their observations.

Learn more: Apple Oxidation

Float a marker man

Their eyes will pop out of their heads when you “levitate” a stick figure right off the table. This experiment works due to the insolubility of dry-erase marker ink in water, combined with the lighter density of the ink.

Learn more: Floating Marker Man

Mason jars stacked with their mouths together, with one color of water on the bottom and another color on top

Discover density with hot and cold water

There are a lot of easy science experiments you can do with density. This one is extremely simple, involving only hot and cold water and food coloring, but the visuals make it appealing and fun.

Learn more: Layered Water

Clear cylinder layered with various liquids in different colors

Layer more liquids

This density demo is a little more complicated, but the effects are spectacular. Slowly layer liquids like honey, dish soap, water, and rubbing alcohol in a glass. Kids will be amazed when the liquids float one on top of the other like magic (except it is really science).

Learn more: Layered Liquids

Giant carbon snake growing out of a tin pan full of sand

Grow a carbon sugar snake

Easy science experiments can still have impressive results. This eye-popping chemical reaction demonstration only requires simple supplies like sugar, baking soda, and sand.

Learn more: Carbon Sugar Snake

Two children are shown (without faces) bouncing balls on a white table

Make homemade bouncy balls

These homemade bouncy balls are easy to make since all you need is glue, food coloring, borax powder, cornstarch, and warm water. You’ll want to store them inside a container like a plastic egg because they will flatten out over time.

Learn more: Make Your Own Bouncy Balls

Pink sidewalk chalk stick sitting on a paper towel

Create eggshell chalk

Eggshells contain calcium, the same material that makes chalk. Grind them up and mix them with flour, water, and food coloring to make your very own sidewalk chalk.

Learn more: Eggshell Chalk

Science student holding a raw egg without a shell

Make naked eggs

This is so cool! Use vinegar to dissolve the calcium carbonate in an eggshell to discover the membrane underneath that holds the egg together. Then, use the “naked” egg for another easy science experiment that demonstrates osmosis .

Learn more: Naked Egg Experiment

Turn milk into plastic

This sounds a lot more complicated than it is, but don’t be afraid to give it a try. Use simple kitchen supplies to create plastic polymers from plain old milk. Sculpt them into cool shapes when you’re done.

Student using a series of test tubes filled with pink liquid

Test pH using cabbage

Teach kids about acids and bases without needing pH test strips. Simply boil some red cabbage and use the resulting water to test various substances—acids turn red and bases turn green.

Learn more: Cabbage pH

Pennies in small cups of liquid labeled coca cola, vinegar + salt, apple juice, water, catsup, and vinegar. Text reads Cleaning Coins Science Experiment. Step by step procedure and explanation.

Clean some old coins

Use common household items to make old oxidized coins clean and shiny again in this simple chemistry experiment. Ask kids to predict (hypothesize) which will work best, then expand the learning by doing some research to explain the results.

Learn more: Cleaning Coins

Blow up a balloon (without blowing)

Chances are good you probably did easy science experiments like this when you were in school yourself. This well-known activity demonstrates the reactions between acids and bases. Fill a bottle with vinegar and a balloon with baking soda. Fit the balloon over the top, shake the baking soda down into the vinegar, and watch the balloon inflate.

Learn more: Balloon Experiments

Assemble a DIY lava lamp

This 1970s trend is back—as an easy science experiment! This activity combines acid/base reactions with density for a totally groovy result.

Four colored cups containing different liquids, with an egg in each

Explore how sugary drinks affect teeth

The calcium content of eggshells makes them a great stand-in for teeth. Use eggs to explore how soda and juice can stain teeth and wear down the enamel. Expand your learning by trying different toothpaste and toothbrush combinations to see how effective they are.

Learn more: Sugar and Teeth Experiment

Mummify a hot dog

If your kids are fascinated by the Egyptians, they’ll love learning to mummify a hot dog. No need for canopic jars ; just grab some baking soda and get started.

Extinguish flames with carbon dioxide

This is a fiery twist on acid-base experiments. Light a candle and talk about what fire needs in order to survive. Then, create an acid-base reaction and “pour” the carbon dioxide to extinguish the flame. The CO2 gas acts like a liquid, suffocating the fire.

I Love You written in lemon juice on a piece of white paper, with lemon half and cotton swabs

Send secret messages with invisible ink

Turn your kids into secret agents! Write messages with a paintbrush dipped in lemon juice, then hold the paper over a heat source and watch the invisible become visible as oxidation goes to work.

Learn more: Invisible Ink

Set popcorn dancing

This is a fun version of the classic baking soda and vinegar experiment, perfect for the younger crowd. The bubbly mixture causes popcorn to dance around in the water.

Learn more: Dancing Popcorn Experiment

Shoot a soda geyser sky-high

You’ve always wondered if this really works, so it’s time to find out for yourself! Kids will marvel at the chemical reaction that sends diet soda shooting high in the air when Mentos are added.

Learn more: Mentos and Coke Experiment

All of these chemistry experiments are perfect for using the scientific method. Form a hypothesis, alter the variables, and then observe the results! You can simplify these projects for younger kids, or add more complexity for older students.

Tub of water with battery leads in it

Break apart covalent bonds

Difficulty: Medium / Materials: Medium

Break the covalent bond of H 2 O into H and O with this simple experiment. You only need simple supplies for this one. Turn it into a science fair project by changing up the variables—does the temperature of the water matter? What happens if you try this with other liquids?

Learn more: Breaking Covalent Bonds

Measure the calories in various foods

Are the calorie counts on your favorite snacks accurate? Build your own calorimeter and find out! This kit from Home Science Tools has all the supplies you’ll need.

Fingerprint divided into two, one half yellow and one half black

Detect latent fingerprints

Forensic science is engrossing and can lead to important career opportunities too. Explore the chemistry needed to detect latent (invisible) fingerprints, just like they do for crime scenes!

Learn more: Fingerprints Project

Use Alka-Seltzer to explore reaction rate

Difficulty: Easy / Materials: Easy

Tweak this basic concept to create a variety of high school chemistry science fair projects. Change the temperature, surface area, pressure, and more to see how reaction rates change.

Determine whether sports drinks really have more electrolytes than other beverages

Difficulty: Medium / Materials: Advanced

Are those pricey sports drinks really worth it? Try this experiment to find out. You’ll need some special equipment for this one; buy a complete kit at Home Science Tools .

Turn flames into a rainbow

You’ll need to get your hands on a few different chemicals for this experiment, but the wow factor will make it worth the effort. Make it a science project by seeing if different materials, air temperature, or other factors change the results.

Supplies needed for mole experiment, included scale, salt, and chalk

Discover the size of a mole

The mole is a key concept in chemistry, so it’s important to ensure students really understand it. This experiment uses simple materials like salt and chalk to make an abstract concept more concrete. Make it a project by applying the same procedure to a variety of substances, or determining whether outside variables have an effect on the results.

Learn more: How Big Is a Mole?

Aluminum foil bowl filled with bubbling liquid over a bunsen burner

Cook up candy to learn mole and molecule calculations

This edible experiment lets students make their own peppermint hard candy while they calculate mass, moles, molecules, and formula weights. Tweak the formulas to create different types of candy and make this into a sweet science fair project!

Learn more: Candy Chemistry

Lime green and orange homemade soap as part of a science experiment

Make soap to understand saponification

Take a closer look at an everyday item: soap! Use oils and other ingredients to make your own soap, learning about esters and saponification. Tinker with the formula to find one that fits a particular set of parameters.

Learn more: Saponification

Uncover the secrets of evaporation

Explore the factors that affect evaporation, then come up with ways to slow them down or speed them up for a simple science fair project.

Learn more: Evaporation

More Chemistry Experiment Science Fair Ideas

These questions and prompts can spark ideas for unique chemistry experiments:

  • Compare the properties of sugar and artificial sweeteners.
  • Explore the impact of temperature, concentration, and seeding on crystal growth.
  • Test various antacids on the market to find the most effective product.
  • What is the optimum temperature for yeast production when baking bread from scratch?
  • Compare the vitamin C content of various fruits and vegetables.
  • How does temperature affect enzyme-catalyzed reactions?
  • Investigate the effects of pH on an acid-base chemical reaction.
  • Devise a new natural way to test pH levels (such as cabbage leaves).
  • What’s the best way to slow down metal oxidation (the form of rust)?
  • How do changes in ingredients and method affect the results of a baking recipe?

Like these chemistry experiments? Don’t miss STEM Activities for Kids of All Ages and Interests .

Plus, get all the latest teaching news and ideas when you sign up for our free newsletters.

Looking for classroom chemistry experiments, school science fair projects, or fun demos you can try at home? Find them all here!

You Might Also Like

Collage of high school science fair projects, including 3D printed cars and a DIY vacuum chamber

70 Best High School Science Fair Projects in Every Subject

Fire up the Bunsen burners! Continue Reading

Copyright © 2024. All rights reserved. 5335 Gate Parkway, Jacksonville, FL 32256

College of Information Science | The University of Arizona | Home

MSIS Capstone Projects

Graduate students meeting

Master of Science capstone projects in the College of Information Science provide an opportunity for students to showcase what they have mastered in the program.

The capstone project is based on a project plan that includes project goals, master's competencies addressed by the project, system design, implementation schedule, assessment plan and milestones. The project contributes to the development and enforcement of the student's knowledge and skill sets in the fields of data science and information science.

The capstone project must exercise all competencies required for the master's degree and must also have a software development component.

Recent Capstone Projects

View recent College of Information Science master's capstone projects completed by students and student teams (descriptions are provided by students):

PROJECT TITLE
& DESCRIPTION
FACULTY ADVISOR

In previous SemEval competitions, the majority of tasks have primarily focused on analyzing words within a text, with scant consideration given to numerical data. But comprehension of numerical values can significantly enhance performance in certain tasks as numbers provide important information in words, especially to me working as a CPA. Numeracy seems one of the recent hot topics in Natural Language Processing and quantitative understanding in NLP is new to me. SemEval 2024 offers NumEval as one of the tasks and NumEval consists of 3 tasks, which then consists of various subtasks. I am particularly interested in Task 1, which is further divided into 3 subtasks: Quantitative Prediction (QP), Quantitative Natural Language Inference (QNLI), and Quantitative Question Answering (QQA). QP is the task of predicting the correct magnitude of the masked numeral while QNLI is the task of making natural language inferences based on quantitative clues and QQA is the other format for testing whether models can understand numerals and semantics.

The goal of this project is to train a machine learning model to match words to images based on their semantic meaning within the context of a phrase or sentence. Often times in Natural Language Processing, models are challenged when it comes to identical words having different meanings depending on the context. In this project we aim to show that the model can identify the correct semantic meaning of ambiguous word tokens by having it choose the correct image representation.


Prompted by the climate crisis and ethical concerns of animal-based diets, recent trends demonstrate a strong push for plant-based dietary options. This project will act as market research while uncovering potential gaps in product availability meeting consumer expectations, company profitability, or sustainability goals.


Snoring is a symptom of Sleep Related Breathing Disorder (SRBD). 57% of men and 40% of women in the US snore. If left untreated it can lead to Obstructive Sleep Apnea (OSA), which one in five adults in the US suffer from some form of. Untreated OSA can result in a number of health problems including hypertension, stroke, arrhythmias, cardiomyopathy. For mild to moderate OSA, use of oral appliances designed by qualified dentists is considered the first line of therapy in management of OSA. Depending on the severity of snoring related to body positions (supine or on the side), positional therapy in combination with an oral appliance can be a useful treatment to help improve quality of life measures. Ability to identify and document snoring events is challenging for patients, especially for patients with no bed partners. Associating the snoring events with patients body position over the duration of sleep period can provide valuable information for recommending appropriate therapy. There is currently no solution that allows this combination of positional and audio data to be easily collected, and there is no software that allows this highly related data to be visualized together.


My goal of the project is to explore how people's music choices on Spotify relate to their political affiliations. From the data, I want to create a model that predicts political leanings based on the user's top genres, artists, history and playlists. From this project, I hope to understand more about the connections between personal music taste and political beliefs, where this will also provide insight on societal dynamics. The project also aims to challenge or approve of cultural stereotypes. The overall goal of the project is to understand how individuals data, such as music, has effect on their identities.

 |  


The Global Terrorism Database is an open-source database containing information on over 200,000 terrorist events from 1970-2022 (and beyond). For each GTD incident, a multitude of information is available. My goal is to build an end-to-end data solution that processes and cleans the GTD dataset, stores it in an analytics ready SQL database, perform analytics on top of the database, and then build an observability dashboard key metrics mined from the dataset. The dashboard will aspire to be a centralized place for hypothetical corporate, NGO, and private sector decision makers to assess terrorism risk across the globe and across time. I want to take the GTD dataset, transform it, mine it, possibly do some predictive analytics, and then present it in a digestible way outside of the cumbersome spreadsheet they provide.


This project aims to delve into the critical issue of road safety by analyzing traffic accident data. The goal is to uncover patterns and factors contributing to accidents, which is of paramount importance for enhancing traffic safety measures, informing policy decisions, and ultimately saving lives. By understanding the circumstances leading to accidents, we can better predict and prevent future incidents, making roads safer for everyone.


The project aims to explore the diverse applications of generative AI within business contexts. It will address the growing relevance of AI-generated content, its impact on business operations, marketing strategies, and customer engagement. Additionally, the project seeks to tackle challenges such as ethical considerations, data privacy, and the potential biases inherent in AI-generated content.

This capstone project will focus on the development of a data pipeline hosted on the AWS cloud platform to analyze trader sentiment based on notes shared on a note-taking platform. The primary objective is to empower traders to make rational decisions by presenting historical data insights on the project's frontend.

It creates a platform on which users can register account, post and interact with other posts. Registered users can comment, post, modify and delete posts.

SESAR is a repository hosting millions of earth science samples, like rocks, minerals, water samples from the ocean, etc. SESAR has a challenging task: Use metadata of a given sample to identify duplicates or suggest to a user that there may be a duplicate in a database. Many samples in data systems for legacy data will never have unique identifiers, so we need to use sample metadata, sample name, and related information such as authors or keywords of papers that have data for the sample to decide or at least suggest that it is the same sample.

iVoices allows students to make stories about technology. We process it in some ways through research and data analysis and provide these information and data to other researchers or interested groups through digital or paper magazines. Through this information, we can better understand the changes of technology to our society and the social problems that arise, so as to better understand our society and technology, and provide some research results for better future development.


We are performing a thorough study using topic modeling and network analysis in the field of Astronomy and Astrophysics. This is a novel project and surprisingly there hasn't been a topic modeling and network study on Astronomy before. This project aims to unearth and reveal global research trends over time. This is an ongoing (long-term) project which is about 40% complete now (however our research paper write-up hasn't even started yet but it should sometime soon in the Spring term). We have been successful with our implementation of STM model for topic modeling, Weak Supervision with Snorkel framework (single-label classifier), Network Analysis of citations network and Citation Disruption Index. This was our progress at the end of Fall 2023. Now, for the upcoming Spring 2024 term we plan on completing the following tasks mentioned in proposed methods.


The main objective of this project is to identify leaf phenology patterns of deciduous broadleaf forests and predicting the species as well as different Phenophases and their Region of interest. By observing and analyzing the past observed PhenoCam Images, I would propose a method using unsupervised machine algorithm to build a prediction model as to how these changes observed in images will help us in the prediction of upcoming modeling of PhenoCam Images. Previously, Professor Heidorn and other students worked on Color Cluster Analysis (Clustering). I aim to elevate previous research by identifying these pattern changes in the images and work on the image segmentation as well as feature extraction from the image.


Federal research grant programs have undergone significant changes in their funding distributions across different topics in the past quarter-century. It's essential to understand these shifts, anticipate future topics of interest, and evaluate the effectiveness of these programs. This project expands on previous work that delved into National Science Foundation's data, broadening the horizon to encompass data from other influential agencies such as NASA and the Department of Energy.


This project aims to look at how grant is given to drone projects. As drones become more important, it's crucial to understand where the money goes. This research helps teachers, leaders, and people who invest in projects see how money is used. It also helps find important trends that can help the robotics industry grow.


I have fostered a dog from Pima Animal Care Center (PACC) by looking through their online database of over 500 dogs, cats, and other small animals. The database online is not user friendly and is not able to easily navigate especially if you are looking for specific animal traits and characteristics. I am proposing to create a new website/database that stores the animal information (such as breed, weight, gender, crate trained, house broken, etc.) so possible foster/adopt parents can find the animal they are looking for more efficiently. I would incorporate the skills I've learned in creating web pages (INFO 515 and 578), information presentation (INFO 578), and more with this project. The problems that it will tackle is beyond the capstone project, but also helping the community foster/adopt animals in the shelter. It will allow users easy access to animal profiles and potentially help fostering/adopting become more efficient.

This capstone project seeks to unravel the intricacies of scientific research funding over the past 25 years. With technological advancements and evolving research priorities shaping the landscape, understanding federal funding patterns is crucial. The project aims to address key questions, including shifts in funding over time, the distribution of funds across diverse research topics, and predictions for future funding trends. Through advanced modeling techniques such as Doc2Vec, BERT, and correlated topic models, the project intends to offer a nuanced analysis beyond traditional methods like Latent Dirichlet Allocation. Additionally, by leveraging supercomputing networks, the project optimizes scalability, enabling the exploration of larger datasets for a more comprehensive understanding. The significance of this endeavor lies in informing policymakers, researchers, and funding agencies, facilitating data-driven decisions, aligning research efforts with current priorities, and optimizing resource allocation for future innovation in scientific research.

Skytrax Airline Quality (airlinequality.com) is a platform where customers can submit their experiences with airlines they have used for travel. Airlines can use this information and determine how they can improve experiences and services that are offered. Since there reviews are constantly added, it can take time to go through each review manually and understand the issue overall. Instead, we can use Sentiment Analysis and Topic Modeling to come up with automated system that can generate charts and other important information for better insights and precise decision making for improving their services.

As a country that has historically been closed off, Uzbekistan has lacked extensive data collection by international organizations such as the World Bank and UN clusters. This scarcity of data has limited the understanding of various social and health dynamics within the country. The recent openness of Uzbekistan to the world and the subsequent publication of new datasets, such as the Multiple Indicator Cluster Surveys (MICS) by UNICEF, present a unique opportunity. This research is among the first to utilize these new and comprehensive data sources to explore critical social issues in Uzbekistan. Moreover, Understanding the impact of maternal education in a patriarchal society like Uzbekistan, where sons often receive preferential treatment in families, is crucial. This research can shed light on the broader social implications of gender and education on child health. By investigating the hypothesis that higher-educated mothers are more likely to provide healthy nutrition to their children, this research could support and inform government efforts to reduce gender disparities and improve child health outcomes. This is particularly relevant as the government is now actively working to bridge gender gaps influenced by cultural traits and systems.

Over the last 7 years, Uzbekistan has undergone significant reforms in areas such as governance, economics, and social policy. While these reforms are critical at the policy level, their success is equally measured by the acceptance and perception of the general public. This project aims to analyze public sentiment on these reforms using comments extracted from social media platforms. This analysis would be beneficial for the areas of reforms that are well-received and those that need more public engagement. My primary research question is: "How does the online community perceive the reforms implemented in Uzbekistan?"

Approximately 18% of outbreaks that occurred in the European region between 2000 and 2010 were associated with water. However, the real burden of waterborne diseases is unknown given a lack of proper surveillance protocols, as well as limited laboratory capacity. Thus, the World Health Organization (2019) has encouraged the strengthening of surveillance systems around Acute Gastrointestinal Illness (AGIs) to better identify ongoing waterborne outbreaks. More specific to urban infrastructure, after 9/11, the deliberate introduction of harmful substances into Water Distribution Systems (WDS) became a threat given the potential for severe public health consequences. More recently, these concerns have been focused on unintentional events resulting from pathogenic, chemical, or microbial agents introduced into the network due to cross-contamination with non-potable water. The Surveillance Response Systems (SRS) have relied mainly on online water quality monitoring, measuring surrogate parameters that indicate an abnormal water quality. However, given this specificity, some contaminants may go undetected limiting the detection capabilities of the framework. Thus, my project proposes a framework to integrate multiple data streams that may indicate an AGI, including reports from public health, customer complaints from water utilities and the status of the system (failures and reported maintenance). The latter streams will supplement online water quality measurements to enhance and increase the detection capabilities of SRS. 

Good teamwork leads to a high level of productivity and job satisfaction. Effective communication among team members is crucial in facilitating cooperation, trust, and efficient problem-solving. One key aspect of effective team communication is closed-loop communication (CLC), which has been proposed in the literature as a coordinating mechanism for effective teamwork. CLC is a feedback process in which the receiver of a message sends a response or confirmation back to the sender. CLC has three components: call-out, check-back, and closing of the loop. The feedback process ensures that messages are accurately transmitted and understood and has been demonstrated to improve team efficiency in various domains. However, most existing research on CLC is conducted post-hoc, for example, by watching videos of sessions after they occur and recording only the parts that researchers are interested in (such as CLC categories and task completion time). There is a need for an automated method for detecting CLC. With the use of automated detection, real-time monitoring of communication can be achieved, allowing for immediate feedback and quick adjustments to be made and largely improving team communication.

Closed-loop communication (CLC) is often recommended in the team research literature as a communication behavior that can guarantee the accuracy of information exchange. Currently, CLC in spoken dialogue is identified via retrospective analyses involving manual transcription and annotation. Currently, most real-time dialogue systems are limited to conversing with a single human at a time. On the other hand, there are numerous analyses of multi-participant spoken dialogue in the academic literature - however, these are primarily performed offline rather than in real-time, and the communicative events in their multi-party conversations are manually coded rather than automatically extracted using information extraction (IE) methods. To address this limitation, I propose to develop a separate downstream CLC detection component that utilizes the outputs of the existing dialog agent, but also reasons about context and state more deeply.


This project will continue work done to predict ( ) levels within the Upper Santa Cruz River. levels within water may directly impact human and animal health and are important indicators of overall water quality. While there has been extensive research on E. coli prediction in aquatic settings, this unique stretch of river requires acute modelling to increase predictive accuracy. By finding an appropriate model and means of communicating this information to the public, the community surrounding the upper Santa Cruz River may be both safer and better informed of the overall health of the ecosystem.


This project integrates machine learning with evolutionary biology to help in phylogenetic reconstruction. This project is worth doing, because AI can help with tree search while maintaining accurate results.


In 2020, a worldwide pandemic broke out. COVID-19 caused mass quarantines across the world, including in the United States. Without the ability to meet in-person, schools looked to online course structures and platforms to host their curriculum. At many universities, including the University of Arizona, the platform Desire 2 Learn, better known as D2L, is used as a central location for students to access, interact with, and submit class content. D2L also reports automated activity metrics to course instructors to be able to track the progress of not only the class, but individual students. I believe these activity metrics, some tracked across time, might be worthwhile indicator metrics to estimate the level of effort and presumed subsequent performance of individual students. Other uses of the analytics could pertain the effectiveness of different teaching styles/ content organization. If the analysis provides conclusive or suggestive results, this could spark more interest in the data and serve as a reliable tool for educators to keep track of. 

The goal of the project is to define a quantitative framework for comparing urban areas based on climate- and human-related features. Defining these areas and their comparability is a key task in urban ecology, the study of ecosystems in and around humans and urbanizing landscapes. There have been efforts in the field of urban geography to classify and compare cities but work from an urban ecology perspective is lacking. Previous urban ecology studies in this area have focused on using specific species of plant and animal life to compare responses to urbanization in different localities. This work will use human features such as city size, population, and infrastructure, as well as climatic features such as temperature, precipitation, and other geographic traits to provide a more general framework for comparing cities across different regions. The resulting framework will enable researchers in urban ecology to better understand the relationships between drivers of ecological and evolutionary patterns in urban areas.

This project aims to extract and analyze the color palettes of building facades in US neighborhoods, addressing urban design, cultural, and environmental insights. 

Machine learning algorithms have been used in the past on admissions data to enhance the admission process, making it more efficient, and this has the potential of improving the selection process. Instead of replacing human decision makers, these algorithms can instead be used to assist them. Human oversight is very crucial to address individual cases that may not fit the model. With new high demand programs developing, such as data science, Machine Learning and Artificial Intelligence, the School of Information has been witnessing an increased number of applications. This has greatly increased the time spent going through applicant information, and the fear is that the admissions staff could soon get overwhelmed by the number of applications to the graduate college, especially during peak intake seasons. Automation of this process using historical data could be done by studying the department decision making process. By evaluating previously admitted candidates and identifying the pivotal application metrics historically employed for admissions, it is possible to automate this process.  Such data can further serve as a basis for predicting both the quantity and characteristics of prospective students likely to excel in the program, as well as estimating total enrollments per semester. By focusing a significant amount of attention on promising applications, this approach ultimately minimizes waste and enhances the efficiency of the selection process.

As a provider of municipal water, the City of Flagstaff, Arizona is governed by the Adequate Water Supply Program as defined by the Arizona Department of Water Resources. Part of this designation is to include both Physical Water Availability, and Continuous Water Availability. To demonstrate these criteria, the city needs to be able to predict future water use based on current consumption versus future anticipated growth, including current water use, committed water use, projected water use, and future needs. In early 2021, the City of Flagstaff received a pro bono publico demonstration dashboard from a consulting firm (EHS-Support). The dashboard attempted to summarize the water consumption each water meter that the City of Flagstaff supplies water to for the past five years. The dashboard then attempted to assign an average water use, per meter, and summarized the average by multiple geographic factors.

I will look at multiple data sets of several pollutant markers and then differentiate them between the pandemic affected years with years before and after lockdowns took place.

The project is currently ongoing and is entitled as "a nested mixed-methods approach to armed non-state actor governance and the rule of law" (PI: Javier Osorio). Recently, conflict scholars advanced different theoretical framework classifying insurgent and criminal governance structures. As there are no existing validated measures, the project relies on an online survey of hundreds of local experts. To conduct the online survey, the research will rely on the institutional license of the online survey system Qualtrics. However, as the number of local experts increase, the time requires to process data becomes intensive (up to 16 hours). The current capstone project proposes application of the parallel computing to enhance the processing performances.   


The project aims to contribute to the scientific understanding of this field by investigating and evaluating various regression models so we can get an idea of the best robust model under different conditions. Identifying these effective models can lead to methodological advancements in Clumped Isotope Thermometry and since we are using datasets with different levels of errors, we can also understand any potential bias.


This project focuses on analyzing the 3D shape of cities worldwide using a dataset that compiles building height information globally. By incorporating shapefiles, such as the one defining city limits, the project aims to conduct a regulation analysis, exploring the interplay between building shapes and urban. This project aims to contribute to the ongoing discourse on sustainable urbanization by providing a detailed examination of the 3D shapes of cities. By utilizing a globally sourced dataset and established methodologies, our exploration is poised to offer valuable insights into the intricate dynamics between urban forms, regulations, and sustainable urban development. This research is valuable because it provides a more detailed understanding of cities beyond traditional 2D studies, offering insights into three-dimensional aspects like building shapes and relationships for improved urban planning.

Colleges and high schools in the state want to know what factors are impacting graduation rates. I am going to explore on a county and individual high school level, graduation rates in public and private high schools in Virginia. I will look at factors such as race, household income, number below the poverty line, size of school, student/teacher ratio, and location. I will explore these relationships with data visualizations as well and using multiple linear regression, principal component analysis, and factor reduction analysis. I will create visualizations to explain these trends to the wider public as well and find an accurate way to predict high school graduation rate. 

The global healthcare landscape is rapidly evolving, with a significant focus on home-based medical devices, particularly blood glucose monitors. In 2022, the market for these devices was valued at USD 12.5 billion, and it's projected to grow at an impressive 8.13% CAGR from 2023 to 2030. The primary drivers include the increasing incidence of diabetes and a growing aging population. The International Diabetes Federation warns that global diabetes cases are set to rise dramatically, from 537 million in 2021 to 643 million by 2030 and a staggering 783 million by 2045. Given this alarming trend, there's a need for a holistic application with visual capabilities to record data generated by home-based medical devices, especially for diabetes management. This project aims to provide a unified platform for individuals to collect, visualize, and manage their health data, ultimately improving the quality of life for millions affected by diabetes worldwide. This project goes beyond glucose tracking, enabling users to record their meals, mood, and personal notes in one place. It aims to simplify wellness management by offering an integrated solution, bridging the gap between data collection and actionable insights. Ultimately, our goal is to empower users to make informed decisions to improve their health.
 

Ready to transform your future in information science?

Learn more about the Master of Science in Information Science by contacting us at [email protected] , or review the admissions process and begin your application now:

Start Your Application

share this!

September 22, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

New results from the CMS experiment put W boson mass mystery to rest

by Tracy Marc, Fermi National Accelerator Laboratory

New results from the CMS experiment put W boson mass mystery to rest

After an unexpected measurement by the Collider Detector at Fermilab (CDF) experiment in 2022, physicists on the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC) announced today a new mass measurement of the W boson, one of nature's force-carrying particles.

This new measurement, which is a first for the CMS experiment, uses a new technique that makes it the most elaborate investigation of the W boson's mass to date. Following nearly a decade of analysis, CMS has found that the W boson's mass is consistent with predictions, finally putting a multi-year long mystery to rest.

The final analysis used 300 million events collected from the 2016 run of the LHC, and 4 billion simulated events. From this dataset, the team reconstructed and then measured the mass from more than 100 million W bosons.

They found that the W boson's mass is 80,360.2 ± 9.9 megaelectron volts (MeV), which is consistent with the Standard Model's predictions of 80,357 ± 6 MeV. They also ran a separate analysis that cross-checks the theoretical assumptions.

"The new CMS result is unique because of its precision and the way we determined the uncertainties," said Patty McBride, a distinguished scientist at the U.S. Department of Energy's Fermi National Research Laboratory and the former CMS spokesperson.

"We've learned a lot from CDF and the other experiments who have worked on the W boson mass question. We are standing on their shoulders, and this is one of the reasons why we are able to take this study a big step forward."

Since the W boson was discovered in 1983, physicists on 10 different experiments have measured its mass.

The W boson is one of the cornerstones of the Standard Model, the theoretical framework that describes nature at its most fundamental level. A precise understanding of the W boson's mass allows scientists to map the interplay of particles and forces, including the strength of the Higgs field and merger of electromagnetism with the weak force, which is responsible for radioactive decay.

"The entire universe is a delicate balancing act," said Anadi Canepa, deputy spokesperson of the CMS experiment and a senior scientist at Fermilab. "If the W mass is different from what we expect, there could be new particles or forces at play."

New results from the CMS experiment put W boson mass mystery to rest

The new CMS measurement has a precision of 0.01%. This level of precision corresponds to measuring a 4-inch-long pencil to between 3.9996 and 4.0004 inches. But unlike pencils, the W boson is a fundamental particle with no physical volume and a mass that is less than a single atom of silver.

"This measurement is extremely difficult to make," Canepa added. "We need multiple measurements from multiple experiments to cross-check the value."

The CMS experiment is unique from the other experiments that have made this measurement because of its compact design, specialized sensors for fundamental particles called muons and an extremely strong solenoid magnet that bends the trajectories of charged particles as they move through the detector.

"CMS's design makes it particularly well-suited for precision mass measurements," McBride said. "It's a next generation experiment."

Because most fundamental particles are incredibly short-lived, scientists measure their masses by adding up the masses and momenta of everything they decay into. This method works well for particles like the Z boson, a cousin of the W boson, which decays into two muons. But the W boson poses a big challenge because one of its decay products is a tiny fundamental particle called a neutrino.

"Neutrinos are notoriously difficult to measure," said Josh Bendavid, a scientist at the Massachusetts Institute of Technology who worked on this analysis. "In collider experiments, the neutrino goes undetected, so we can only work with half the picture."

Working with just half the picture means that the physicists need to be creative. Before running the analysis on real experimental data, the scientists first simulated billions of LHC collisions.

"In some cases, we even had to model small deformations in the detector," Bendavid said. "The precision is high enough that we care about small twists and bends; even if they're as small as the width of a human hair."

Physicists also need numerous theoretical inputs, such as what is happening inside the protons when they collide, how the W boson is produced, and how it moves before it decays.

"It's a real art to figure out the impact of theory inputs," McBride said.

In the past, physicists used the Z boson as a stand-in for the W boson while calibrating their theoretical models. While this method has many advantages, it also adds a layer of uncertainty into the process.

"Z and W bosons are siblings, but not twins," said Elisabetta Manca, a researcher at the University of California Los Angeles and one of the analyzers. "Physicists need to make a few assumptions when extrapolating from the Z to the W, and these assumptions are still under discussion."

To reduce this uncertainty, CMS researchers developed a novel analysis technique that uses only real W boson data to constrain the theoretical inputs.

"We were able to do this effectively thanks to a combination of a larger data set, the experience we gained from an earlier W boson study, and the latest theoretical developments," Bendavid said. "This has allowed us to free ourselves from the Z boson as our reference point."

As part of this analysis, they also examined 100 million tracks from the decays of well-known particles to recalibrate a massive section of the CMS detector until it was an order of magnitude more precise.

"This new level of precision will allow us to tackle critical measurements, such as those involving the W, Z and Higgs bosons, with enhanced accuracy," Manca said.

The most challenging part of the analysis was its time intensiveness, since it required creating a novel analysis technique and developing an incredibly deep understanding of the CMS detector.

"I started this research as a summer student, and now I'm in my third year as a postdoc," Manca said. "It's a marathon, not a sprint."

Provided by Fermi National Accelerator Laboratory

Explore further

Feedback to editors

science experiments decorations

Researchers observe an antiferromagnetic diode effect in even-layered MnBi₂Te₄

3 hours ago

science experiments decorations

Scientists explore origins of horseback riding through human skeletons

science experiments decorations

'Pirate birds' force other seabirds to regurgitate fish meals. Their thieving ways could spread lethal avian flu

22 hours ago

science experiments decorations

Even the heaviest particles experience the usual quantum weirdness, new experiment shows

science experiments decorations

New method developed to relocate misplaced proteins in cells

23 hours ago

science experiments decorations

New biosensor illuminates physiological signals in living animals

science experiments decorations

New tool to help decision makers navigate possible futures of the Colorado River

science experiments decorations

Many people in the Pacific lack access to adequate toilets—and climate change makes things worse

Sep 21, 2024

science experiments decorations

Saturday Citations: Football metaphors in physics; vets treat adorable baby rhino's broken leg

science experiments decorations

New data science tool greatly speeds up molecular analysis of our environment

Sep 20, 2024

Relevant PhysicsForums posts

Is geometrical optics essential for a deeper understanding of light.

2 hours ago

How does output voltage of an electric guitar work?

Sep 16, 2024

Electromagnetic Skrymion Created

Sep 15, 2024

Looking for info on old, unlabeled Geissler tubes

Sep 13, 2024

Why does my ceiling glow in the dark?

Sep 8, 2024

Brownian Motions and Quantifying Randomness in Physical Systems

Sep 2, 2024

More from Other Physics Topics

Related Stories

science experiments decorations

CMS experiment at CERN weighs in on the W boson mass

Sep 17, 2024

science experiments decorations

ATLAS probes Higgs interaction with the heaviest quarks

Sep 9, 2024

science experiments decorations

ATLAS provides first measurement of the W-boson width at the LHC

Apr 10, 2024

science experiments decorations

ATLAS sets record precision on Higgs boson's mass

Jul 21, 2023

science experiments decorations

Examining the delicate balance of lepton flavors

Mar 26, 2024

science experiments decorations

Improved ATLAS result weighs in on the W boson

Mar 23, 2023

Recommended for you

science experiments decorations

Physicist finds tailwind has minimal impact on uphill cycling speed in Everesting challenges

science experiments decorations

Scientists propose a new method to search for dark matter using LIGO

science experiments decorations

Findings hint at a superfluid phase in ²⁹F and ²⁸O

Sep 19, 2024

science experiments decorations

Researchers build AI model database to find new alloys for nuclear fusion facilities

science experiments decorations

Ocean waves grow way beyond known limits, new research finds

Sep 18, 2024

science experiments decorations

LHC experiments observe quantum entanglement at the highest energy yet

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. Science Experiment Party Decorations Set

    science experiments decorations

  2. Celebrating Einstein's 137th Birthday with a Fun Science Party

    science experiments decorations

  3. Kara's Party Ideas Science Lab Birthday Party

    science experiments decorations

  4. Science Party Centerpieces Science Lab Table Decorations

    science experiments decorations

  5. Girls Science Party Decorations

    science experiments decorations

  6. Science Party Decorations & Props Printable Kit

    science experiments decorations

VIDEO

  1. 12 science experiments

  2. Tiny Balloon Magic with Water: Fun and Easy Craft Ideas!

  3. lava lamp viral experiment in the world

  4. Easy DIY Decoration || Paper Crafts Decoration Ideas

  5. The Power of Lava Lamps: Not Just for Decoration!

  6. 70+ Science Experiments Kit

COMMENTS

  1. 70 Easy Science Experiments Using Materials You Already Have

    Go Science Kids. 43. "Flip" a drawing with water. Light refraction causes some really cool effects, and there are multiple easy science experiments you can do with it. This one uses refraction to "flip" a drawing; you can also try the famous "disappearing penny" trick.

  2. 30+ Science Fair Projects That Will Wow The Crowd

    Bleeding Blossoms Explore capillary action and absorption in this science meets art project. Magical Water Blossoms Make beautiful blossoming paper flowers with the help of absorption. This project has a simple wow moment that everyone enjoys watching. 12.

  3. List of Science Fair Ideas and Experiments You Can Do

    Remember, find something that interests you, and have fun with it. To download and print this list of ideas CLICK HERE. Here's a list of over 30 Science Fair ideas to get you started. Then download science experiments, and watch experiment videos to inspire your project.

  4. Science Projects (1,350 results)

    Browse Science Projects. Over 1,200 free science projects for K-12. Browse by subject, grade level, or try our Topic Selection Wizard to find your winning science project. With science projects in 32 different areas of science from astronomy to zoology, we've got something for everyone! Let us help you find a science project that fits your ...

  5. STEM Activities for Kids (480 results)

    STEM Activities for Kids. (480 results) Anytime can be the right time to explore STEM (science, technology, engineering and math). Explore our favorite experiments, engineering challenges and demonstrations with these fun hands-on STEM activities! Materials are easy to find, most activities take an hour or less, and the STEM learning is limitless.

  6. List of Science Fair Project Ideas

    Below is a list of the 1173 science fair project ideas on our site. To help you find a topic that can hold your interest, Science Buddies has also developed the Topic Selection Wizard.It will help you focus on an area of science that's best for you without having to read through every project one by one!

  7. 35 Easy Science Experiments You Can Do Today!

    Musical Jars Science Experiment. This super easy experiment is simple as it is fun! Kids make their own musical instruments with clear jars and water then investigate sound waves, pitch, and more. When the experiment is complete, use the colorful new "instrument" for a fun music lesson. Kids can play and take turns to "name that tune"!

  8. Science Experiments for Kids:

    Science experiments you can do at home! Explore an ever growing list of hundreds of fun and easy science experiments. Have fun trying these experiments at home or use them for science fair project ideas. Explore experiments by category, newest experiments, most popular experiments, easy at home experiments, or simply scroll down this page for tons of awesome experiment ideas!

  9. 32 Awesome Science Experiments For Kids (Fun AND Easy!)

    Along the way, you and your child get a lot of time to learn about momentum, velocity, friction, energy transfer, and interference (e.g., the cat). 17. Melting. This is a simple and fun experiment that can be set up in a short time and then fill-up your day with observations and new experiments.

  10. 70 Best High School Science Fair Projects in Every Subject

    Remove the air in a DIY vacuum chamber. Instructables. Difficulty: Medium / Materials: Medium. You can use a vacuum chamber to do lots of cool high school science fair projects, but a ready-made one can be expensive. Try this project to make your own with basic supplies. Learn more: Vacuum Chamber at Instructables.

  11. 50 Fun Kids Science Experiments

    Transform ordinary spinach into glowing spinach under ultraviolet light. Investigate whether an orange will sink or float in water, and learn about density and buoyancy. Explore surface tension with this soap powered boat experiment. Make pepper dance across the water with this easy pepper and soap experiment.

  12. 30 Best Science Experiments & Projects for High School

    26. Film Canister Explosions. Prepare for a blast of excitement and chemistry with the high school science experiment - "Film Canister Explosions!". This project teaches students about chemical reactions and pressure build-up. Learn more: Steve Spangler.

  13. The Big List of Science Fair Project Ideas, Resources, and More

    Make this year's fair the best one ever with this huge list of science fair project ideas for every kind of student. Tips for Choosing a Science Fair Project. Source: @eriverselementary. With thousands of possible projects, it can be difficult to narrow down something that's a good fit for every student. Try these tips to help them find the ...

  14. 37 Cool Science Experiments for Kids to Do at Home

    Difficulty Level: Easy. Messiness Level: Medium. In this quick and fun science experiment, kids will mix water, oil, food coloring, and antacid tablets to create their own (temporary) lava lamp. Oil and water don't mix easily, and the antacid tablets will cause the oil to form little globules that are dyed by the food coloring.

  15. 45 Easy Science Experiments for Kids

    Wash and dry your hands. Leave the eggs in the glasses for 12 hours. After 12 hours, remove the eggs from the glasses of soda one at a time. Rinse them in cool water and pat them dry with the ...

  16. 50 Simple Science Experiments with Supplies You Already Have

    Plant Themed Simple Science Experiments. Enjoy learning about seeds, plant parts, and how plants grow with these simple science experiments. Learn about how plants soak up water through their stems with a flower experiment for kids from Growing A Jeweled Rose.; Watch seeds sprout as you grow seeds in a jar as seen on Teaching Mama.; Learn about the parts of the seed with a seed coat experiment ...

  17. The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to

    Most science experiments performed, from elementary to high school students and all the way up to professional scientists, are investigatory projects. ... How To: The Best Investigatory Projects in Science: 16 Fun & Easy Ideas to Kickstart Your Project By Osas Obaiza; 7/10/13 5:10 PM; 12/31/14 2:26 PM;

  18. 20 Awesome Science Experiments You Can Do Right Now At Home

    And you can bring that awesomeness into your very own home with these 20 safe DIY experiments you can do right now with ordinary household items. 1. Make Objects Seemingly Disappear. Refraction is ...

  19. 5th Grade Science Fair Projects

    Fifth grade science fair projects provide students the chance to explore scientific topics that intrigue them, with help from expert mentors guiding the. ... Think back to the 1960s and you may recall bell bottom pants and flowers, as well as popular home decor items like lava lamps! Created by Edward Craven Walker, these lamps were known for ...

  20. 45 Easy and Fun Science Activities for Preschool

    Mix up some "magic" milk. Laughing Kids Learn. Difficulty: Easy / Materials: Basic. A drop or two of dish soap will make food coloring dance and swirl across the surface of a shallow bowl of milk. Preschool science experiments often seem like magic, but this one is all about surface tension and chemical reactions.

  21. 110+ Best Science Investigatory Project Topics: Dive into Science

    Whether you're mixing chemicals, observing insects, or measuring temperature, you're the scientist in charge. Step 4: Clues and Evidence. As you experiment, you collect clues in the form of data - numbers, measurements, observations. It's like gathering puzzle pieces. Step 5: The "Aha!".

  22. 211+ Science Fair Project Ideas For High School Students

    Science Fair Ideas for 7th Grade. Physics. Simple Machines: Investigate how different simple machines like levers and pulleys work.; Electricity and Circuits: Build circuits to study how voltage, current, and resistance relate.; Sound Waves: Experiment with sound waves to understand their properties.; Motion and Forces: Study motion laws and see how forces affect objects.

  23. Chemistry Science Projects (82 results)

    Chemistry Science Projects. (82 results) An experienced chemistry professor used to say that it took about one explosion per week to maintain college students' attention in chemistry lectures. At that rate, we'd get in pretty big trouble with a lot of parents and teachers! Don't worry, we still have lots of bubbles, fizzes, bangs, and color ...

  24. Top 10 Science Project Ideas for Class 6

    For Class 6 students looking to explore science through fun and educational projects, consider these top 10 ideas: creating a volcano model to demonstrate chemical reactions, building a simple circuit with a battery and bulbs, making a homemade water cycle model, constructing a model of the solar system, growing crystals using salt or sugar, building a working model of the digestive system ...

  25. Top 10 Science Project Ideas for Class 9

    With these class 9 science project ideas for beginners, you'll have the opportunity to learn and grow while having a blast in the process. Top 10 Science Project Ideas for Class 9. Science projects are an excellent way for Class 9 students to explore scientific concepts in a fun and hands-on manner. Whether you're looking for easy experiments ...

  26. 45 Cool Chemistry Experiments, Demos, and Science Fair Projects

    More Chemistry Experiment Science Fair Ideas. These questions and prompts can spark ideas for unique chemistry experiments: Compare the properties of sugar and artificial sweeteners. Explore the impact of temperature, concentration, and seeding on crystal growth. Test various antacids on the market to find the most effective product.

  27. MSIS Capstone Projects

    Master of Science capstone projects in the College of Information Science provide an opportunity for students to showcase what they have mastered in the program. The capstone project is based on a project plan that includes project goals, master's competencies addressed by the project, system design, implementation schedule, assessment plan and ...

  28. High School Science Projects (650 results)

    High School Science Projects. (650 results) Science Buddies' high school science projects are the perfect way for high school students to have fun exploring science, technology, engineering, and math (STEM). Our high school projects are written and tested by scientists and are specifically created for use by students in the high school grades.

  29. New results from the CMS experiment put W boson mass mystery to rest

    The new CMS measurement has a precision of 0.01%. This level of precision corresponds to measuring a 4-inch-long pencil to between 3.9996 and 4.0004 inches.