The fermentation of sugars using yeast: A discovery experiment

Charles Pepin (student) and Charles Marzzacco (retired), Melbourne, FL

Share via Facebook

Introduction

Enzyme catalysis 1  is an important topic which is often neglected in introductory chemistry courses. In this paper, we present a simple experiment involving the yeast-catalyzed fermentation of sugars. The experiment is easy to carry out, does not require expensive equipment and is suitable for introductory chemistry courses.

The sugars used in this study are sucrose and lactose (disaccharides), and glucose, fructose and galactose (monosaccharides). Lactose, glucose and fructose were obtained from a health food store and the galactose from Carolina Science Supply Company. The sucrose was obtained at the grocery store as white sugar. The question that we wanted to answer was “Do all sugars undergo yeast fermentation at the same rate?”

Sugar fermentation results in the production of ethanol and carbon dioxide. In the case of sucrose, the fermentation reaction is:

\[C_{12}H_{22}O_{11}(aq)+H_2 O\overset{Yeast\:Enzymes}{\longrightarrow}4C_{2}H_{5}OH(aq) + 4CO_{2}(g)\]

Lactose is also C 12 H 22 O 11  but the atoms are arranged differently. Before the disaccharides sucrose and lactose can undergo fermentation, they have to be broken down into monosaccharides by the hydrolysis reaction shown below:

\[C_{12}H_{22}O_{11} + H_{2}O \longrightarrow 2C_{6}H_{12}O_{6}\]

The hydrolysis of sucrose results in the formation of glucose and fructose, while lactose produces glucose and galactose.

sucrose + water \(\longrightarrow\) glucose + fructose

lactose + water \(\longrightarrow\) glucose + galactose

The enzymes sucrase and lactase are capable of catalyzing the hydrolysis of sucrose and lactose, respectively.

The monosaccharides glucose, fructose and galactose all have the molecular formula C 6 H 12 O 6  and ferment as follows:

\[C_{6}H_{12}O_{6}(aq)\overset{Yeast Enzymes}{\longrightarrow}2C_{2}H_{5}OH(aq) + 2CO_{2}(g)\]

In our experiments 20.0 g of the sugar was dissolved in 100 mL of tap water. Next 7.0 g of Red Star ®  Quick-Rise Yeast was added to the solution and the mixture was microwaved for 15 seconds at full power in order to fully activate the yeast. (The microwave power is 1.65 kW.) This resulted in a temperature of about 110  o F (43  o C) which is in the recommended temperature range for activation. The cap was loosened to allow the carbon dioxide to escape. The mass of the reaction mixture was measured as a function of time. The reaction mixture was kept at ambient temperature, and no attempt at temperature control was used. Each package of Red Star Quick-Rise Yeast has a mass of 7.0 g so this amount was selected for convenience. Other brands of baker’s yeast could have been used.

This method of studying chemical reactions has been reported by Lugemwa and Duffy et al. 2,3  We used a balance good to 0.1 g to do the measurements. Although fermentation is an anaerobic process, it is not necessary to exclude oxygen to do these experiments. Lactose and galactose dissolve slowly. Mild heat using a microwave greatly speeds up the process. When using these sugars, allow the sugar solutions to cool to room temperature before adding the yeast and microwaving for an additional 15 seconds.

Fermentation rate of sucrose, lactose alone, and lactose with lactase

Fig. 1 shows plots of mass loss vs time for sucrose, lactose alone and lactose with a dietary supplement lactase tablet added 1.5 hours before starting the experiment. All samples had 20.0 g of the respective sugar and 7.0 g of Red Star Quick-Rise Yeast. Initially the mass loss was recorded every 30 minutes. We continued taking readings until the mass leveled off which was about 600 minutes. If one wanted to speed up the reaction, a larger amount of yeast could be used. The results show that while sucrose readily undergoes mass loss and thus fermentation, lactose does not. Clearly the enzymes in the yeast are unable to cause the lactose to ferment. However, when lactase is present significant fermentation occurs. Lactase causes lactose to split into glucose and galactose. A comparison of the sucrose fermentation curve with the lactose containing lactase curve shows that initially they both ferment at the same rate.

Plot of Mass of CO2 given off (g) versus time (minutes) for 20 grams of sucrose, lactose with lactase tablet, and lactose without lactase tablet.

Fig. 1. Comparison of the mass of CO 2 released vs time for the fermentation of sucrose, lactose alone, and lactose with a lactase tablet. Each 20.0 g sample was dissolved in 100 mL of tap water and then 7.0 g of Red Star Quick-Rise Yeast was added.

However, when the reactions go to completion, the lactose, lactase and yeast mixture gives off only about half as much CO 2  as the sucrose and yeast mixture. This suggests that one of the two sugars that result when lactose undergoes hydrolysis does not undergo yeast fermentation. In order to verify this, we compared the rates of fermentation of glucose and galactose using yeast and found that in the presence of yeast glucose readily undergoes fermentation while no fermentation occurs in galactose.

Plot of Mass of CO2 given off (g) versus time (minutes) for 20 grams of sucrose, glucose, and fructose.

Fig. 2. Comparison of the mass of CO 2 released vs time for the fermentation of sucrose, glucose and fructose. Each 20 g sugar sample was dissolved in 100 mL of water and then 7.0 g of yeast was added.

Fermentation rate of sucrose, glucose and fructose

Next we decided to compare the rate of fermentation of sucrose with that glucose and fructose, the two compounds that make up sucrose. We hypothesized that the disaccharide would ferment more slowly because it would first have to undergo hydrolysis. In fact, though, Fig. 2 shows that the three sugars give off CO 2  at about the same rate. Our hypothesis was wrong. Although there is some divergence of the three curves at longer times, the sucrose curve is always as high as or higher than the glucose and fructose curves. The observation that the total amount of CO 2  released at the end is not the same for the three sugars may be due to the purity of the fructose and glucose samples not being as high as that of the sucrose.

Fermentation rate and sugar concentration

Next, we decided to investigate how the rate of fermentation depends on the concentration of the sugar. Fig. 3 shows the yeast fermentation curves for 10.0 g and 20.0 g of glucose. It can be seen that the initial rate of CO 2  mass loss is the same for the 10.0 and 20.0 g samples. Of course the total amount of CO 2  given off by the 20.0 g sample is twice as much as that for the 10.0 g sample as is expected. Later, we repeated this experiment using sucrose in place of glucose and obtained the same result.

Plot of Mass of CO2 given off (g) versus time (minutes) for 20 grams of glucose and 10 grams of glucose.

Fig. 3. Comparison of the mass of CO 2  released vs time for the fermentation of 20.0 g of glucose and 10.0 g of glucose. Each sugar sample was dissolved in 100 mL of water and then 7.0 g of yeast was added.

Fermentation rate and yeast concentration

After seeing that the rate of yeast fermentation does not depend on the concentration of sugar under the conditions of our experiments, we decided to see if it depends on the concentration of the yeast. We took two 20.0 g samples of glucose and added 7.0 g of yeast to one and 3.5 g to the other. The results are shown in Fig. 4. It can clearly be seen that the rate of CO 2  release does depend on the concentration of the yeast. The slope of the sample with 7.0 g of yeast is about twice as large as that with 3.5 g of yeast. We repeated the experiment with sucrose and fructose in place of glucose and obtained similar results.

Two sets of data graphing the mass of CO2 (grams) given off vs time (minutes). One line (7.0 g yeast used) is a straight with a steep positive slope that levels off at 400 minutes. One line (3.5 g yeast used) is a straight with a steep positive slope (not as steep as 7.0 g) that levels off at 650 minutes.

Fig. 4. Comparison of the mass of CO 2 released vs time for the fermentation of two 20.0 g samples of glucose dissolved in 100 mL of water. One had 7.0 g of yeast and the other had 3.5 g of yeast.

In hindsight, the observation that the rate of fermentation is dependent on the concentration of yeast but independent of the concentration of sugar is not surprising. Enzyme saturation can be explained to students in very simple terms. A molecule such as glucose is rather small compared to a typical enzyme. Enzymes are proteins with large molar masses that are typically greater than 100,000 g/mol. 1  Clearly, there are many more glucose molecules in the reaction mixture than enzyme molecules. The large molecular ratio of sugar to enzyme clearly means that every enzyme site is occupied by a sugar molecule. Thus, doubling or halving the sugar concentration cannot make a significant difference in the initial rate of the reaction. On the other hand, doubling the concentration of the enzyme should double the rate of reaction since you are doubling the number of enzyme sites.

The experiments described here are easy to perform and require only a balance good to 0.1 g and a timer. The results of these experiments can be discussed at various levels of sophistication and are consistent with enzyme kinetics as described by the Michaelis-Menten model. 1  The experiments can be extended to look at the effect of temperature on the rate of reaction. For enzyme reactions such as this, the reaction does not take place if the temperature is too high because the enzymes get denatured. The effect of pH and salt concentration can also be investigated.

  • Jeremy M. Berg, John L. Tymoczko and Lubert Stryer,  Biochemistry , 6th edition, W.H. Freeman and Company, 2007, pages 205-237.
  • Fugentius Lugemwa, Decomposition of Hydrogen Peroxide,  Chemical Educator , April 2013, pages 85-87.
  • Daniel Q. Duffy, Stephanie A. Shaw, William D. Bare, Kenneth A. Goldsby, More Chemistry in a Soda Bottle, A Conservation of Mass Activity,  Journal of Chemical Education , August 1995, pages 734-736.
  • Jessica L Epstein, Matthew Vieira, Binod Aryal, Nicolas Vera and Melissa Solis, Developing Biofuel in the Teaching Laboratory: Ethanol from Various Sources,  Journal of Chemical Education , April 2010, pages 708–710.

More about April 2015

Metal creating bubbles in blue liquid.

Department of Chemistry 200 University Ave. W Waterloo, Ontario, Canada N2L 3G1

[email protected]

Get Your ALL ACCESS Shop Pass here →

Little bins for little hands logo

Yeast Fermentation Experiment

Fermentation is a fascinating process that kids can easily explore through a simple experiment using yeast and sugar. This hands-on activity teaches students about fermentation and introduces them to the scientific method, data collection, and analysis.

yeast experiment method

Investigate how different types of sugar (white, brown, and honey) affect the rate of yeast fermentation by measuring the amount of carbon dioxide (CO₂) produced.

Example Hypothesis: If yeast is added to different types of sugar, then the type of sugar will affect the amount of carbon dioxide produced, with white sugar producing more CO₂ than the others.

💡 Learn more about using the scientific method [here] and choosing variables .

Watch the Video:

  • Active dry yeast
  • White sugar
  • Brown sugar
  • Measuring spoons and measuring cups
  • Small bottles or test tubes
  • Rubber bands
  • Ruler or measuring tape
  • Notebook and pen for recording data ( grab free journal sheets here )
  • Printable Experiment Page (see below)

yeast experiment method

Instructions:

STEP 1. Prepare a yeast solution by dissolving a packet of active dry yeast in warm water according to the package instructions.

STEP 2. Label 3 bottles and add 1 tablespoon of white sugar to the “White Sugar” bottle. Add 1 tablespoon of brown sugar to the “Brown Sugar” bottle. Measure 1 tablespoon of honey and add it to the “Honey” bottle.

STEP 3. Measure and pour an equal amount of the yeast solution into each bottle, ensuring the yeast is well mixed with the sugar.

STEP 4. Quickly stretch a balloon over the mouth of each bottle. Secure the balloons with rubber bands if needed. Ensure the balloons are sealed tightly to prevent CO₂ from escaping.

STEP 5. Place the bottles in a warm, consistent environment to promote fermentation.

STEP 6. Observe and record the size of the balloons at regular intervals (e.g., every 15 minutes) for 1-2 hours. Use a ruler or measuring tape to measure the circumference of each balloon.

TIP: Note the time it takes for the balloons to start inflating and the differences in balloon size over time for each type of sugar.

STEP 7: Analyze the data by comparing the amount of CO₂ produced (balloon size) for each type of sugar. Create a graph showing the balloon size over time for each sugar type.

STEP 8. Determine which sugar type resulted in the most and least CO₂ production. Discuss possible reasons for the differences, considering what each sugar is made of. Think about whether the results support or disprove the hypothesis. Can you come up with further experiments or variations to explore other factors affecting yeast fermentation?

yeast experiment method

Free Printable Yeast and Sugar Experiment Project

Grab the free fermentation experiment worksheet here. Join our STEM club for a printable version of the video!

yeast experiment method

The Science Behind Yeast Fermentation

For Our Younger Scientists: Yeast is a type of fungus that feeds on sugars. When you mix yeast with sugar and water, it starts to eat the sugar and convert it into alcohol and carbon dioxide gas. The gas gets trapped in the balloon, causing it to inflate. This shows that fermentation is happening!

Yeast fermentation is a biological process where yeast converts sugars into alcohol and carbon dioxide (CO₂) in the absence of oxygen. This process is used in baking, brewing, wine making and biofuel production. How much fermentation occurs can vary depending on the type of sugar used.

Yeast contains enzymes that break down sugar molecules through a series of chemical reactions . Here’s how it works:

Enzymes are molecules, usually proteins, that act as catalysts to speed up chemical reactions within living organisms.

First the yeast is mixed with warm water, and it becomes activated. The warm environment “wakes up” the yeast cells, preparing them to consume sugars.

Yeast cells produce enzymes that break down sugar molecules (sucrose, glucose, and fructose) into simpler molecules. This process is called glycolysis. During glycolysis, sugar molecules are converted into pyruvate, releasing a small amount of energy.

In the absence of oxygen (anaerobic conditions), yeast cells convert pyruvate into ethanol (alcohol) and carbon dioxide gas (CO₂). The carbon dioxide produced during fermentation is what inflates the balloons in the experiment.

Different Sugars & Fermentation

Different sugars can affect the rate of fermentation. This is how:

  • White Sugar (Sucrose): Composed of glucose and fructose and is easily broken down by yeast, leading to efficient CO₂ production.
  • Brown Sugar: Contains sucrose along with molasses, which includes minerals and additional nutrients. May result in a slightly different fermentation rate due to its composition.
  • Honey: Contains a mixture of glucose, fructose, and other components. The additional components can influence the fermentation process, potentially leading to different CO₂ production rates compared to pure sucrose.

The amount of CO₂ produced depends on how easily the yeast can break down the sugar molecules and convert them into ethanol and CO₂. Sugars that are more readily broken down by yeast will typically produce more CO₂ faster.

More Fun Science Experiments

Explore chemistry , biology and more, including…

  • Bread Mold Experiment
  • Baking Soda Balloon Experiment
  • Bread In A Bag
  • Elephant Toothpaste
  • Mentos and Soda

yeast experiment method

Helpful Science Resources To Get You Started

Here are a few resources that will help you introduce science more effectively to your kiddos or students and feel confident presenting materials. You’ll find helpful free printables throughout.

  • Best Science Practices (as it relates to the scientific method)
  • Science Vocabulary
  • All About Scientists
  • Free Science Worksheets
  • DIY Science Kits
  • Science Tools for Kids
  • Scientific Method for Kids
  • Citizen Science Guide
  • Join us in the Club

Printable Science Projects For Kids

If you’re looking to grab all of our printable science projects in one convenient place plus exclusive worksheets and bonuses like a STEAM Project pack, our Science Project Pack is what you need! Over 300+ Pages!

  • 90+ classic science activities  with journal pages, supply lists, set up and process, and science information.  NEW! Activity-specific observation pages!
  • Best science practices posters  and our original science method process folders for extra alternatives!
  • Be a Collector activities pack  introduces kids to the world of making collections through the eyes of a scientist. What will they collect first?
  • Know the Words Science vocabulary pack  includes flashcards, crosswords, and word searches that illuminate keywords in the experiments!
  • My science journal writing prompts  explore what it means to be a scientist!!
  • Bonus STEAM Project Pack:  Art meets science with doable projects!
  • Bonus Quick Grab Packs for Biology, Earth Science, Chemistry, and Physics

yeast experiment method

Subscribe to receive a free 5-Day STEM Challenge Guide

~ projects to try now ~.

yeast experiment method

Remember Me

Vernier

Experiment Fermentation with Yeast Experiments​

Fermentation with yeast.

Experiment #11 from Investigating Biology through Inquiry

yeast experiment method

Introduction

Yeast can metabolize sugar in two ways, aerobically , with the aid of oxygen, or anaerobically , without oxygen. When yeast metabolizes a sugar under anaerobic conditions, ethanol (CH 3 CH 2 OH) and carbon dioxide (CO 2 ) gas are produced. An equation for the fermentation of the simple sugar glucose (C 6 H 12 O 6 ) is:

\text{C}_{6}\text{H}_{12}\text{O}_{6} \rightarrow \text{2 } \text{CH}_{3}\text{CH}_{2}\text{OH} + \text{2 } \text{CO}_{2} + \text{energy}

The metabolic activity of yeast can be determined by the measurement of gas pressure inside the fermentation vessel.

In this Preliminary Activity, you will use a Gas Pressure Sensor to monitor the pressure inside a conical tube as yeast metabolizes glucose anaerobically. When data collection is complete, you will perform a linear fit on the resultant graph to determine the fermentation rate.

After completing the Preliminary Activity, you will first use reference sources to find out more about sugar fermentation by yeast before you choose and investigate a researchable question dealing with fermentation. Some topics to consider in your reference search are:

  • monosaccharides
  • disaccharides
  • fermentation
  • anaerobic respiration
  • aerobic respiration
  • enzyme inhibitor

Sensors and Equipment

This experiment features the following sensors and equipment. Additional equipment may be required.

yeast experiment method

Correlations

Teaching to an educational standard? This experiment supports the standards below.

Ready to Experiment?

Ask an expert.

Get answers to your questions about how to teach this experiment with our support team.

Purchase the Lab Book

This experiment is #11 of Investigating Biology through Inquiry . The experiment in the book includes student instructions as well as instructor information for set up, helpful hints, and sample graphs and data.

yeast experiment method

yeast experiment method

  • The Open University
  • Accessibility hub
  • Guest user / Sign out
  • Study with The Open University

My OpenLearn Profile

Personalise your OpenLearn profile, save your favourite content and get recognition for your learning

About this free course

Become an ou student, download this course, share this free course.

Basic science: understanding experiments

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

3.1.3 Yeast experiment explained

yeast experiment method

You’ve seen the results of the yeast experiment, but what do these results mean?

Yeasts are microscopic, single-celled organisms, and are a type of fungus that is found all around us, in water, soil, on plants, on animals and in the air. Like all organisms, when yeasts are put in the right type of environment they will thrive; growing and reproducing.

Your experiments were designed to help you identify which environment promotes the most yeast growth. The first three glasses in your experiment contained different temperature environments (cold water, hot water and body temperature water). At very low temperatures the yeast simply does not grow but it is still alive – if the environment were to warm up a bit, it would gradually begin to grow. At very high temperatures the cells within the yeast become damaged beyond repair and even if the temperature of that environment cooled, the yeast would still be unable to grow. At optimum temperatures the yeast thrives.

Your third and fourth glasses both contained environments at optimum temperature (body temperature) for yeast growth, the difference being, the fourth glass was sealed. The variable between these two experiments was the amount of available oxygen. You may have been surprised by your results here, thinking that a living organism in an environment without oxygen cannot survive? However, you should have found that yeast grew pretty well in both experiments.

To understand why yeast was able to thrive in both conditions we need to understand the chemical process occurring in each glass during the experiment. In the three open glasses, oxygen is readily available, and from the moment you added the yeast to the sugar solution it began to chemically convert the sugar in the water and the oxygen in the air into energy, water, and carbon dioxide in a process called aerobic respiration.

Yeast is a slightly unusual organism – it is a ‘facultative anaerobe’. This means that in oxygen-free environments they can still survive. The yeast simply switches from aerobic respiration (requiring oxygen) to anaerobic respiration (not requiring oxygen) and converts its food without oxygen in a process known as fermentation. Due to the absence of oxygen, the waste products of this chemical reaction are different and this fermentation process results in carbon dioxide and ethanol.

Depending on how long you monitored your experiment for and how much space your yeast had to grow you may have noticed that, with time, the experiment sealed with cling film slowed down. This is for two reasons; firstly because less energy is produced by anaerobic respiration than by aerobic respiration and, secondly, because the ethanol produced is actually toxic to the yeast. As the ethanol concentration in the environment increases, the yeast cells begin to get damaged, slowing their growth.

The ethanol produced is a type of alcohol, so it is this process that allows us to use it to make beer and wine. When used in bread making, the yeast begins by respiring aerobically, the carbon dioxide from which makes the bread rise. Eventually the available oxygen is used up, and the yeast switches to anaerobic respiration producing alcohol and carbon dioxide instead. Do not worry though; this alcohol evaporates during the baking process, so you won’t get drunk at lunchtime from eating your sandwiches.

Previous

COMMENTS

  1. The fermentation of sugars using yeast: A discovery experiment

    In this paper, we present a simple experiment involving the yeast-catalyzed fermentation of sugars. The experiment is easy to carry out, does not require expensive equipment and is suitable for introductory chemistry courses.

  2. Fermentation of glucose using yeast - RSC Education

    Beer and wine are produced by fermenting glucose with yeast. Yeast contains enzymes that catalyse the breakdown of glucose to ethanol and carbon dioxide. In this experiment, learners will set up a glucose solution to ferment and then test the products.

  3. Growing Yeast: Sugar Fermentation | Science project ...

    Being classified as fungi (the same kingdom as mushrooms), yeast is more closely related to you than plants! In this experiment we will be watching yeast come to life as it breaks down sugar, also known as sucrose, through a process called fermentation. Let’s explore how this happens and why! Problem. What is sugar’s effect on yeast?

  4. 1.8: Respiration and Fermentation - Biology LibreTexts

    This part of the lab investigates aerobic cellular respiration by Saccharomyces cerevisiae, also referred to as “baker’s yeast” and “brewer’s yeast.” Yeast is a unicellular fungus that can convert glucose into carbon dioxide and ATP when oxygen is present.

  5. Yeast Reproduction in Sugar Substitutes | Science Project

    Yeast actually eat sugar so that they can reproduce and make more yeast, and make bread dough rise. But can they use sugar substitutes to do this? In this science project you will get to investigate how well yeast grow with sugar substitutes as a food source.

  6. Yeast Fermentation Experiment - Little Bins for Little Hands

    Yeast fermentation is a biological process where yeast converts sugars into alcohol and carbon dioxide (CO₂) in the absence of oxygen. This process is used in baking, brewing, wine making and biofuel production.

  7. Yeast and the expansion of bread dough | Experiment | RSC ...

    Enzymes in yeast ferment sugar forming carbon dioxide and ethanol. The carbon dioxide makes the bread rise, while the ethanol evaporates when the bread is baked. In this experiment, students investigate the effect of different temperatures on yeast activity and the expansion of the bread dough.

  8. Fermentation with Yeast > Experiment 11 from Investigating ...

    Introduction. Yeast can metabolize sugar in two ways, aerobically, with the aid of oxygen, or anaerobically, without oxygen. When yeast metabolizes a sugar under anaerobic conditions, ethanol (CH 3 CH 2 OH) and carbon dioxide (CO 2) gas are produced.

  9. 3.1.3 Yeast experiment explained - OpenLearn

    The yeast simply switches from aerobic respiration (requiring oxygen) to anaerobic respiration (not requiring oxygen) and converts its food without oxygen in a process known as fermentation. Due to the absence of oxygen, the waste products of this chemical reaction are different and this fermentation process results in carbon dioxide and ethanol.

  10. An Aerobic Exercise: Yeast Metabolism with and without ...

    241 reviews. Add Favorite Remove Favorite. Abstract. This is a straightforward project on glucose metabolism in yeast. You will grow yeast under aerobic and anaerobic conditions and measure carbon dioxide output to assess metabolic efficiency. Summary. Areas of Science. Microbiology. Difficulty. Method. Scientific Method. Time Required.