Hypothesis Testing for Means & Proportions

Lisa Sullivan, PhD

Professor of Biostatistics

Boston University School of Public Health

hypothesis testing with proportions

Introduction

This is the first of three modules that will addresses the second area of statistical inference, which is hypothesis testing, in which a specific statement or hypothesis is generated about a population parameter, and sample statistics are used to assess the likelihood that the hypothesis is true. The hypothesis is based on available information and the investigator's belief about the population parameters. The process of hypothesis testing involves setting up two competing hypotheses, the null hypothesis and the alternate hypothesis. One selects a random sample (or multiple samples when there are more comparison groups), computes summary statistics and then assesses the likelihood that the sample data support the research or alternative hypothesis. Similar to estimation, the process of hypothesis testing is based on probability theory and the Central Limit Theorem.  

This module will focus on hypothesis testing for means and proportions. The next two modules in this series will address analysis of variance and chi-squared tests. 

Learning Objectives

After completing this module, the student will be able to:

  • Define null and research hypothesis, test statistic, level of significance and decision rule
  • Distinguish between Type I and Type II errors and discuss the implications of each
  • Explain the difference between one and two sided tests of hypothesis
  • Estimate and interpret p-values
  • Explain the relationship between confidence interval estimates and p-values in drawing inferences
  • Differentiate hypothesis testing procedures based on type of outcome variable and number of sample

Introduction to Hypothesis Testing

Techniques for hypothesis testing  .

The techniques for hypothesis testing depend on

  • the type of outcome variable being analyzed (continuous, dichotomous, discrete)
  • the number of comparison groups in the investigation
  • whether the comparison groups are independent (i.e., physically separate such as men versus women) or dependent (i.e., matched or paired such as pre- and post-assessments on the same participants).

In estimation we focused explicitly on techniques for one and two samples and discussed estimation for a specific parameter (e.g., the mean or proportion of a population), for differences (e.g., difference in means, the risk difference) and ratios (e.g., the relative risk and odds ratio). Here we will focus on procedures for one and two samples when the outcome is either continuous (and we focus on means) or dichotomous (and we focus on proportions).

General Approach: A Simple Example

The Centers for Disease Control (CDC) reported on trends in weight, height and body mass index from the 1960's through 2002. 1 The general trend was that Americans were much heavier and slightly taller in 2002 as compared to 1960; both men and women gained approximately 24 pounds, on average, between 1960 and 2002.   In 2002, the mean weight for men was reported at 191 pounds. Suppose that an investigator hypothesizes that weights are even higher in 2006 (i.e., that the trend continued over the subsequent 4 years). The research hypothesis is that the mean weight in men in 2006 is more than 191 pounds. The null hypothesis is that there is no change in weight, and therefore the mean weight is still 191 pounds in 2006.  

Null Hypothesis

H : μ= 191         (no change)

Research Hypothesis

H : μ> 191         (investigator's belief)

In order to test the hypotheses, we select a random sample of American males in 2006 and measure their weights. Suppose we have resources available to recruit n=100 men into our sample. We weigh each participant and compute summary statistics on the sample data. Suppose in the sample we determine the following:

Do the sample data support the null or research hypothesis? The sample mean of 197.1 is numerically higher than 191. However, is this difference more than would be expected by chance? In hypothesis testing, we assume that the null hypothesis holds until proven otherwise. We therefore need to determine the likelihood of observing a sample mean of 197.1 or higher when the true population mean is 191 (i.e., if the null hypothesis is true or under the null hypothesis). We can compute this probability using the Central Limit Theorem. Specifically,

(Notice that we use the sample standard deviation in computing the Z score. This is generally an appropriate substitution as long as the sample size is large, n > 30. Thus, there is less than a 1% probability of observing a sample mean as large as 197.1 when the true population mean is 191. Do you think that the null hypothesis is likely true? Based on how unlikely it is to observe a sample mean of 197.1 under the null hypothesis (i.e., <1% probability), we might infer, from our data, that the null hypothesis is probably not true.

Suppose that the sample data had turned out differently. Suppose that we instead observed the following in 2006:

How likely it is to observe a sample mean of 192.1 or higher when the true population mean is 191 (i.e., if the null hypothesis is true)? We can again compute this probability using the Central Limit Theorem. Specifically,

There is a 33.4% probability of observing a sample mean as large as 192.1 when the true population mean is 191. Do you think that the null hypothesis is likely true?  

Neither of the sample means that we obtained allows us to know with certainty whether the null hypothesis is true or not. However, our computations suggest that, if the null hypothesis were true, the probability of observing a sample mean >197.1 is less than 1%. In contrast, if the null hypothesis were true, the probability of observing a sample mean >192.1 is about 33%. We can't know whether the null hypothesis is true, but the sample that provided a mean value of 197.1 provides much stronger evidence in favor of rejecting the null hypothesis, than the sample that provided a mean value of 192.1. Note that this does not mean that a sample mean of 192.1 indicates that the null hypothesis is true; it just doesn't provide compelling evidence to reject it.

In essence, hypothesis testing is a procedure to compute a probability that reflects the strength of the evidence (based on a given sample) for rejecting the null hypothesis. In hypothesis testing, we determine a threshold or cut-off point (called the critical value) to decide when to believe the null hypothesis and when to believe the research hypothesis. It is important to note that it is possible to observe any sample mean when the true population mean is true (in this example equal to 191), but some sample means are very unlikely. Based on the two samples above it would seem reasonable to believe the research hypothesis when x̄ = 197.1, but to believe the null hypothesis when x̄ =192.1. What we need is a threshold value such that if x̄ is above that threshold then we believe that H 1 is true and if x̄ is below that threshold then we believe that H 0 is true. The difficulty in determining a threshold for x̄ is that it depends on the scale of measurement. In this example, the threshold, sometimes called the critical value, might be 195 (i.e., if the sample mean is 195 or more then we believe that H 1 is true and if the sample mean is less than 195 then we believe that H 0 is true). Suppose we are interested in assessing an increase in blood pressure over time, the critical value will be different because blood pressures are measured in millimeters of mercury (mmHg) as opposed to in pounds. In the following we will explain how the critical value is determined and how we handle the issue of scale.

First, to address the issue of scale in determining the critical value, we convert our sample data (in particular the sample mean) into a Z score. We know from the module on probability that the center of the Z distribution is zero and extreme values are those that exceed 2 or fall below -2. Z scores above 2 and below -2 represent approximately 5% of all Z values. If the observed sample mean is close to the mean specified in H 0 (here m =191), then Z will be close to zero. If the observed sample mean is much larger than the mean specified in H 0 , then Z will be large.  

In hypothesis testing, we select a critical value from the Z distribution. This is done by first determining what is called the level of significance, denoted α ("alpha"). What we are doing here is drawing a line at extreme values. The level of significance is the probability that we reject the null hypothesis (in favor of the alternative) when it is actually true and is also called the Type I error rate.

α = Level of significance = P(Type I error) = P(Reject H 0 | H 0 is true).

Because α is a probability, it ranges between 0 and 1. The most commonly used value in the medical literature for α is 0.05, or 5%. Thus, if an investigator selects α=0.05, then they are allowing a 5% probability of incorrectly rejecting the null hypothesis in favor of the alternative when the null is in fact true. Depending on the circumstances, one might choose to use a level of significance of 1% or 10%. For example, if an investigator wanted to reject the null only if there were even stronger evidence than that ensured with α=0.05, they could choose a =0.01as their level of significance. The typical values for α are 0.01, 0.05 and 0.10, with α=0.05 the most commonly used value.  

Suppose in our weight study we select α=0.05. We need to determine the value of Z that holds 5% of the values above it (see below).

Standard normal distribution curve showing an upper tail at z=1.645 where alpha=0.05

The critical value of Z for α =0.05 is Z = 1.645 (i.e., 5% of the distribution is above Z=1.645). With this value we can set up what is called our decision rule for the test. The rule is to reject H 0 if the Z score is 1.645 or more.  

With the first sample we have

Because 2.38 > 1.645, we reject the null hypothesis. (The same conclusion can be drawn by comparing the 0.0087 probability of observing a sample mean as extreme as 197.1 to the level of significance of 0.05. If the observed probability is smaller than the level of significance we reject H 0 ). Because the Z score exceeds the critical value, we conclude that the mean weight for men in 2006 is more than 191 pounds, the value reported in 2002. If we observed the second sample (i.e., sample mean =192.1), we would not be able to reject the null hypothesis because the Z score is 0.43 which is not in the rejection region (i.e., the region in the tail end of the curve above 1.645). With the second sample we do not have sufficient evidence (because we set our level of significance at 5%) to conclude that weights have increased. Again, the same conclusion can be reached by comparing probabilities. The probability of observing a sample mean as extreme as 192.1 is 33.4% which is not below our 5% level of significance.

Hypothesis Testing: Upper-, Lower, and Two Tailed Tests

The procedure for hypothesis testing is based on the ideas described above. Specifically, we set up competing hypotheses, select a random sample from the population of interest and compute summary statistics. We then determine whether the sample data supports the null or alternative hypotheses. The procedure can be broken down into the following five steps.  

  • Step 1. Set up hypotheses and select the level of significance α.

H 0 : Null hypothesis (no change, no difference);  

H 1 : Research hypothesis (investigator's belief); α =0.05

 

Upper-tailed, Lower-tailed, Two-tailed Tests

The research or alternative hypothesis can take one of three forms. An investigator might believe that the parameter has increased, decreased or changed. For example, an investigator might hypothesize:  

: μ > μ , where μ is the comparator or null value (e.g., μ =191 in our example about weight in men in 2006) and an increase is hypothesized - this type of test is called an ; : μ < μ , where a decrease is hypothesized and this is called a ; or : μ ≠ μ where a difference is hypothesized and this is called a .  

The exact form of the research hypothesis depends on the investigator's belief about the parameter of interest and whether it has possibly increased, decreased or is different from the null value. The research hypothesis is set up by the investigator before any data are collected.

 

  • Step 2. Select the appropriate test statistic.  

The test statistic is a single number that summarizes the sample information.   An example of a test statistic is the Z statistic computed as follows:

When the sample size is small, we will use t statistics (just as we did when constructing confidence intervals for small samples). As we present each scenario, alternative test statistics are provided along with conditions for their appropriate use.

  • Step 3.  Set up decision rule.  

The decision rule is a statement that tells under what circumstances to reject the null hypothesis. The decision rule is based on specific values of the test statistic (e.g., reject H 0 if Z > 1.645). The decision rule for a specific test depends on 3 factors: the research or alternative hypothesis, the test statistic and the level of significance. Each is discussed below.

  • The decision rule depends on whether an upper-tailed, lower-tailed, or two-tailed test is proposed. In an upper-tailed test the decision rule has investigators reject H 0 if the test statistic is larger than the critical value. In a lower-tailed test the decision rule has investigators reject H 0 if the test statistic is smaller than the critical value.  In a two-tailed test the decision rule has investigators reject H 0 if the test statistic is extreme, either larger than an upper critical value or smaller than a lower critical value.
  • The exact form of the test statistic is also important in determining the decision rule. If the test statistic follows the standard normal distribution (Z), then the decision rule will be based on the standard normal distribution. If the test statistic follows the t distribution, then the decision rule will be based on the t distribution. The appropriate critical value will be selected from the t distribution again depending on the specific alternative hypothesis and the level of significance.  
  • The third factor is the level of significance. The level of significance which is selected in Step 1 (e.g., α =0.05) dictates the critical value.   For example, in an upper tailed Z test, if α =0.05 then the critical value is Z=1.645.  

The following figures illustrate the rejection regions defined by the decision rule for upper-, lower- and two-tailed Z tests with α=0.05. Notice that the rejection regions are in the upper, lower and both tails of the curves, respectively. The decision rules are written below each figure.

Rejection Region for Upper-Tailed Z Test (H : μ > μ ) with α=0.05

The decision rule is: Reject H if Z 1.645.

 

 

α

Z

0.10

1.282

0.05

1.645

0.025

1.960

0.010

2.326

0.005

2.576

0.001

3.090

0.0001

3.719

Standard normal distribution with lower tail at -1.645 and alpha=0.05

Rejection Region for Lower-Tailed Z Test (H 1 : μ < μ 0 ) with α =0.05

The decision rule is: Reject H 0 if Z < 1.645.

a

Z

0.10

-1.282

0.05

-1.645

0.025

-1.960

0.010

-2.326

0.005

-2.576

0.001

-3.090

0.0001

-3.719

Standard normal distribution with two tails

Rejection Region for Two-Tailed Z Test (H 1 : μ ≠ μ 0 ) with α =0.05

The decision rule is: Reject H 0 if Z < -1.960 or if Z > 1.960.

0.20

1.282

0.10

1.645

0.05

1.960

0.010

2.576

0.001

3.291

0.0001

3.819

The complete table of critical values of Z for upper, lower and two-tailed tests can be found in the table of Z values to the right in "Other Resources."

Critical values of t for upper, lower and two-tailed tests can be found in the table of t values in "Other Resources."

  • Step 4. Compute the test statistic.  

Here we compute the test statistic by substituting the observed sample data into the test statistic identified in Step 2.

  • Step 5. Conclusion.  

The final conclusion is made by comparing the test statistic (which is a summary of the information observed in the sample) to the decision rule. The final conclusion will be either to reject the null hypothesis (because the sample data are very unlikely if the null hypothesis is true) or not to reject the null hypothesis (because the sample data are not very unlikely).  

If the null hypothesis is rejected, then an exact significance level is computed to describe the likelihood of observing the sample data assuming that the null hypothesis is true. The exact level of significance is called the p-value and it will be less than the chosen level of significance if we reject H 0 .

Statistical computing packages provide exact p-values as part of their standard output for hypothesis tests. In fact, when using a statistical computing package, the steps outlined about can be abbreviated. The hypotheses (step 1) should always be set up in advance of any analysis and the significance criterion should also be determined (e.g., α =0.05). Statistical computing packages will produce the test statistic (usually reporting the test statistic as t) and a p-value. The investigator can then determine statistical significance using the following: If p < α then reject H 0 .  

 

 

  • Step 1. Set up hypotheses and determine level of significance

H 0 : μ = 191 H 1 : μ > 191                 α =0.05

The research hypothesis is that weights have increased, and therefore an upper tailed test is used.

  • Step 2. Select the appropriate test statistic.

Because the sample size is large (n > 30) the appropriate test statistic is

  • Step 3. Set up decision rule.  

In this example, we are performing an upper tailed test (H 1 : μ> 191), with a Z test statistic and selected α =0.05.   Reject H 0 if Z > 1.645.

We now substitute the sample data into the formula for the test statistic identified in Step 2.  

We reject H 0 because 2.38 > 1.645. We have statistically significant evidence at a =0.05, to show that the mean weight in men in 2006 is more than 191 pounds. Because we rejected the null hypothesis, we now approximate the p-value which is the likelihood of observing the sample data if the null hypothesis is true. An alternative definition of the p-value is the smallest level of significance where we can still reject H 0 . In this example, we observed Z=2.38 and for α=0.05, the critical value was 1.645. Because 2.38 exceeded 1.645 we rejected H 0 . In our conclusion we reported a statistically significant increase in mean weight at a 5% level of significance. Using the table of critical values for upper tailed tests, we can approximate the p-value. If we select α=0.025, the critical value is 1.96, and we still reject H 0 because 2.38 > 1.960. If we select α=0.010 the critical value is 2.326, and we still reject H 0 because 2.38 > 2.326. However, if we select α=0.005, the critical value is 2.576, and we cannot reject H 0 because 2.38 < 2.576. Therefore, the smallest α where we still reject H 0 is 0.010. This is the p-value. A statistical computing package would produce a more precise p-value which would be in between 0.005 and 0.010. Here we are approximating the p-value and would report p < 0.010.                  

Type I and Type II Errors

In all tests of hypothesis, there are two types of errors that can be committed. The first is called a Type I error and refers to the situation where we incorrectly reject H 0 when in fact it is true. This is also called a false positive result (as we incorrectly conclude that the research hypothesis is true when in fact it is not). When we run a test of hypothesis and decide to reject H 0 (e.g., because the test statistic exceeds the critical value in an upper tailed test) then either we make a correct decision because the research hypothesis is true or we commit a Type I error. The different conclusions are summarized in the table below. Note that we will never know whether the null hypothesis is really true or false (i.e., we will never know which row of the following table reflects reality).

Table - Conclusions in Test of Hypothesis

 

is True

Correct Decision

Type I Error

is False

Type II Error

Correct Decision

In the first step of the hypothesis test, we select a level of significance, α, and α= P(Type I error). Because we purposely select a small value for α, we control the probability of committing a Type I error. For example, if we select α=0.05, and our test tells us to reject H 0 , then there is a 5% probability that we commit a Type I error. Most investigators are very comfortable with this and are confident when rejecting H 0 that the research hypothesis is true (as it is the more likely scenario when we reject H 0 ).

When we run a test of hypothesis and decide not to reject H 0 (e.g., because the test statistic is below the critical value in an upper tailed test) then either we make a correct decision because the null hypothesis is true or we commit a Type II error. Beta (β) represents the probability of a Type II error and is defined as follows: β=P(Type II error) = P(Do not Reject H 0 | H 0 is false). Unfortunately, we cannot choose β to be small (e.g., 0.05) to control the probability of committing a Type II error because β depends on several factors including the sample size, α, and the research hypothesis. When we do not reject H 0 , it may be very likely that we are committing a Type II error (i.e., failing to reject H 0 when in fact it is false). Therefore, when tests are run and the null hypothesis is not rejected we often make a weak concluding statement allowing for the possibility that we might be committing a Type II error. If we do not reject H 0 , we conclude that we do not have significant evidence to show that H 1 is true. We do not conclude that H 0 is true.

Lightbulb icon signifying an important idea

 The most common reason for a Type II error is a small sample size.

Tests with One Sample, Continuous Outcome

Hypothesis testing applications with a continuous outcome variable in a single population are performed according to the five-step procedure outlined above. A key component is setting up the null and research hypotheses. The objective is to compare the mean in a single population to known mean (μ 0 ). The known value is generally derived from another study or report, for example a study in a similar, but not identical, population or a study performed some years ago. The latter is called a historical control. It is important in setting up the hypotheses in a one sample test that the mean specified in the null hypothesis is a fair and reasonable comparator. This will be discussed in the examples that follow.

Test Statistics for Testing H 0 : μ= μ 0

  • if n > 30
  • if n < 30

Note that statistical computing packages will use the t statistic exclusively and make the necessary adjustments for comparing the test statistic to appropriate values from probability tables to produce a p-value. 

The National Center for Health Statistics (NCHS) published a report in 2005 entitled Health, United States, containing extensive information on major trends in the health of Americans. Data are provided for the US population as a whole and for specific ages, sexes and races.  The NCHS report indicated that in 2002 Americans paid an average of $3,302 per year on health care and prescription drugs. An investigator hypothesizes that in 2005 expenditures have decreased primarily due to the availability of generic drugs. To test the hypothesis, a sample of 100 Americans are selected and their expenditures on health care and prescription drugs in 2005 are measured.   The sample data are summarized as follows: n=100, x̄

=$3,190 and s=$890. Is there statistical evidence of a reduction in expenditures on health care and prescription drugs in 2005? Is the sample mean of $3,190 evidence of a true reduction in the mean or is it within chance fluctuation? We will run the test using the five-step approach. 

  • Step 1.  Set up hypotheses and determine level of significance

H 0 : μ = 3,302 H 1 : μ < 3,302           α =0.05

The research hypothesis is that expenditures have decreased, and therefore a lower-tailed test is used.

This is a lower tailed test, using a Z statistic and a 5% level of significance.   Reject H 0 if Z < -1.645.

  •   Step 4. Compute the test statistic.  

We do not reject H 0 because -1.26 > -1.645. We do not have statistically significant evidence at α=0.05 to show that the mean expenditures on health care and prescription drugs are lower in 2005 than the mean of $3,302 reported in 2002.  

Recall that when we fail to reject H 0 in a test of hypothesis that either the null hypothesis is true (here the mean expenditures in 2005 are the same as those in 2002 and equal to $3,302) or we committed a Type II error (i.e., we failed to reject H 0 when in fact it is false). In summarizing this test, we conclude that we do not have sufficient evidence to reject H 0 . We do not conclude that H 0 is true, because there may be a moderate to high probability that we committed a Type II error. It is possible that the sample size is not large enough to detect a difference in mean expenditures.      

The NCHS reported that the mean total cholesterol level in 2002 for all adults was 203. Total cholesterol levels in participants who attended the seventh examination of the Offspring in the Framingham Heart Study are summarized as follows: n=3,310, x̄ =200.3, and s=36.8. Is there statistical evidence of a difference in mean cholesterol levels in the Framingham Offspring?

Here we want to assess whether the sample mean of 200.3 in the Framingham sample is statistically significantly different from 203 (i.e., beyond what we would expect by chance). We will run the test using the five-step approach.

H 0 : μ= 203 H 1 : μ≠ 203                       α=0.05

The research hypothesis is that cholesterol levels are different in the Framingham Offspring, and therefore a two-tailed test is used.

  •   Step 3. Set up decision rule.  

This is a two-tailed test, using a Z statistic and a 5% level of significance. Reject H 0 if Z < -1.960 or is Z > 1.960.

We reject H 0 because -4.22 ≤ -1. .960. We have statistically significant evidence at α=0.05 to show that the mean total cholesterol level in the Framingham Offspring is different from the national average of 203 reported in 2002.   Because we reject H 0 , we also approximate a p-value. Using the two-sided significance levels, p < 0.0001.  

Statistical Significance versus Clinical (Practical) Significance

This example raises an important concept of statistical versus clinical or practical significance. From a statistical standpoint, the total cholesterol levels in the Framingham sample are highly statistically significantly different from the national average with p < 0.0001 (i.e., there is less than a 0.01% chance that we are incorrectly rejecting the null hypothesis). However, the sample mean in the Framingham Offspring study is 200.3, less than 3 units different from the national mean of 203. The reason that the data are so highly statistically significant is due to the very large sample size. It is always important to assess both statistical and clinical significance of data. This is particularly relevant when the sample size is large. Is a 3 unit difference in total cholesterol a meaningful difference?  

Consider again the NCHS-reported mean total cholesterol level in 2002 for all adults of 203. Suppose a new drug is proposed to lower total cholesterol. A study is designed to evaluate the efficacy of the drug in lowering cholesterol.   Fifteen patients are enrolled in the study and asked to take the new drug for 6 weeks. At the end of 6 weeks, each patient's total cholesterol level is measured and the sample statistics are as follows:   n=15, x̄ =195.9 and s=28.7. Is there statistical evidence of a reduction in mean total cholesterol in patients after using the new drug for 6 weeks? We will run the test using the five-step approach. 

H 0 : μ= 203 H 1 : μ< 203                   α=0.05

  •  Step 2. Select the appropriate test statistic.  

Because the sample size is small (n<30) the appropriate test statistic is

This is a lower tailed test, using a t statistic and a 5% level of significance. In order to determine the critical value of t, we need degrees of freedom, df, defined as df=n-1. In this example df=15-1=14. The critical value for a lower tailed test with df=14 and a =0.05 is -2.145 and the decision rule is as follows:   Reject H 0 if t < -2.145.

We do not reject H 0 because -0.96 > -2.145. We do not have statistically significant evidence at α=0.05 to show that the mean total cholesterol level is lower than the national mean in patients taking the new drug for 6 weeks. Again, because we failed to reject the null hypothesis we make a weaker concluding statement allowing for the possibility that we may have committed a Type II error (i.e., failed to reject H 0 when in fact the drug is efficacious).

Lightbulb icon signifyig an important idea

This example raises an important issue in terms of study design. In this example we assume in the null hypothesis that the mean cholesterol level is 203. This is taken to be the mean cholesterol level in patients without treatment. Is this an appropriate comparator? Alternative and potentially more efficient study designs to evaluate the effect of the new drug could involve two treatment groups, where one group receives the new drug and the other does not, or we could measure each patient's baseline or pre-treatment cholesterol level and then assess changes from baseline to 6 weeks post-treatment. These designs are also discussed here.

Video - Comparing a Sample Mean to Known Population Mean (8:20)

Link to transcript of the video

Tests with One Sample, Dichotomous Outcome

Hypothesis testing applications with a dichotomous outcome variable in a single population are also performed according to the five-step procedure. Similar to tests for means, a key component is setting up the null and research hypotheses. The objective is to compare the proportion of successes in a single population to a known proportion (p 0 ). That known proportion is generally derived from another study or report and is sometimes called a historical control. It is important in setting up the hypotheses in a one sample test that the proportion specified in the null hypothesis is a fair and reasonable comparator.    

In one sample tests for a dichotomous outcome, we set up our hypotheses against an appropriate comparator. We select a sample and compute descriptive statistics on the sample data. Specifically, we compute the sample size (n) and the sample proportion which is computed by taking the ratio of the number of successes to the sample size,

We then determine the appropriate test statistic (Step 2) for the hypothesis test. The formula for the test statistic is given below.

Test Statistic for Testing H 0 : p = p 0

if min(np 0 , n(1-p 0 )) > 5

The formula above is appropriate for large samples, defined when the smaller of np 0 and n(1-p 0 ) is at least 5. This is similar, but not identical, to the condition required for appropriate use of the confidence interval formula for a population proportion, i.e.,

Here we use the proportion specified in the null hypothesis as the true proportion of successes rather than the sample proportion. If we fail to satisfy the condition, then alternative procedures, called exact methods must be used to test the hypothesis about the population proportion.

Example:  

The NCHS report indicated that in 2002 the prevalence of cigarette smoking among American adults was 21.1%.  Data on prevalent smoking in n=3,536 participants who attended the seventh examination of the Offspring in the Framingham Heart Study indicated that 482/3,536 = 13.6% of the respondents were currently smoking at the time of the exam. Suppose we want to assess whether the prevalence of smoking is lower in the Framingham Offspring sample given the focus on cardiovascular health in that community. Is there evidence of a statistically lower prevalence of smoking in the Framingham Offspring study as compared to the prevalence among all Americans?

H 0 : p = 0.211 H 1 : p < 0.211                     α=0.05

We must first check that the sample size is adequate.   Specifically, we need to check min(np 0 , n(1-p 0 )) = min( 3,536(0.211), 3,536(1-0.211))=min(746, 2790)=746. The sample size is more than adequate so the following formula can be used:

This is a lower tailed test, using a Z statistic and a 5% level of significance. Reject H 0 if Z < -1.645.

We reject H 0 because -10.93 < -1.645. We have statistically significant evidence at α=0.05 to show that the prevalence of smoking in the Framingham Offspring is lower than the prevalence nationally (21.1%). Here, p < 0.0001.  

The NCHS report indicated that in 2002, 75% of children aged 2 to 17 saw a dentist in the past year. An investigator wants to assess whether use of dental services is similar in children living in the city of Boston. A sample of 125 children aged 2 to 17 living in Boston are surveyed and 64 reported seeing a dentist over the past 12 months. Is there a significant difference in use of dental services between children living in Boston and the national data?

Calculate this on your own before checking the answer.

Video - Hypothesis Test for One Sample and a Dichotomous Outcome (3:55)

Tests with Two Independent Samples, Continuous Outcome

There are many applications where it is of interest to compare two independent groups with respect to their mean scores on a continuous outcome. Here we compare means between groups, but rather than generating an estimate of the difference, we will test whether the observed difference (increase, decrease or difference) is statistically significant or not. Remember, that hypothesis testing gives an assessment of statistical significance, whereas estimation gives an estimate of effect and both are important.

Here we discuss the comparison of means when the two comparison groups are independent or physically separate. The two groups might be determined by a particular attribute (e.g., sex, diagnosis of cardiovascular disease) or might be set up by the investigator (e.g., participants assigned to receive an experimental treatment or placebo). The first step in the analysis involves computing descriptive statistics on each of the two samples. Specifically, we compute the sample size, mean and standard deviation in each sample and we denote these summary statistics as follows:

for sample 1:

for sample 2:

The designation of sample 1 and sample 2 is arbitrary. In a clinical trial setting the convention is to call the treatment group 1 and the control group 2. However, when comparing men and women, for example, either group can be 1 or 2.  

In the two independent samples application with a continuous outcome, the parameter of interest in the test of hypothesis is the difference in population means, μ 1 -μ 2 . The null hypothesis is always that there is no difference between groups with respect to means, i.e.,

The null hypothesis can also be written as follows: H 0 : μ 1 = μ 2 . In the research hypothesis, an investigator can hypothesize that the first mean is larger than the second (H 1 : μ 1 > μ 2 ), that the first mean is smaller than the second (H 1 : μ 1 < μ 2 ), or that the means are different (H 1 : μ 1 ≠ μ 2 ). The three different alternatives represent upper-, lower-, and two-tailed tests, respectively. The following test statistics are used to test these hypotheses.

Test Statistics for Testing H 0 : μ 1 = μ 2

  • if n 1 > 30 and n 2 > 30
  • if n 1 < 30 or n 2 < 30

NOTE: The formulas above assume equal variability in the two populations (i.e., the population variances are equal, or s 1 2 = s 2 2 ). This means that the outcome is equally variable in each of the comparison populations. For analysis, we have samples from each of the comparison populations. If the sample variances are similar, then the assumption about variability in the populations is probably reasonable. As a guideline, if the ratio of the sample variances, s 1 2 /s 2 2 is between 0.5 and 2 (i.e., if one variance is no more than double the other), then the formulas above are appropriate. If the ratio of the sample variances is greater than 2 or less than 0.5 then alternative formulas must be used to account for the heterogeneity in variances.    

The test statistics include Sp, which is the pooled estimate of the common standard deviation (again assuming that the variances in the populations are similar) computed as the weighted average of the standard deviations in the samples as follows:

Because we are assuming equal variances between groups, we pool the information on variability (sample variances) to generate an estimate of the variability in the population. Note: Because Sp is a weighted average of the standard deviations in the sample, Sp will always be in between s 1 and s 2 .)

Data measured on n=3,539 participants who attended the seventh examination of the Offspring in the Framingham Heart Study are shown below.  

 

Characteristic

n

S

n

s

Systolic Blood Pressure

1,623

128.2

17.5

1,911

126.5

20.1

Diastolic Blood Pressure

1,622

75.6

9.8

1,910

72.6

9.7

Total Serum Cholesterol

1,544

192.4

35.2

1,766

207.1

36.7

Weight

1,612

194.0

33.8

1,894

157.7

34.6

Height

1,545

68.9

2.7

1,781

63.4

2.5

Body Mass Index

1,545

28.8

4.6

1,781

27.6

5.9

Suppose we now wish to assess whether there is a statistically significant difference in mean systolic blood pressures between men and women using a 5% level of significance.  

H 0 : μ 1 = μ 2

H 1 : μ 1 ≠ μ 2                       α=0.05

Because both samples are large ( > 30), we can use the Z test statistic as opposed to t. Note that statistical computing packages use t throughout. Before implementing the formula, we first check whether the assumption of equality of population variances is reasonable. The guideline suggests investigating the ratio of the sample variances, s 1 2 /s 2 2 . Suppose we call the men group 1 and the women group 2. Again, this is arbitrary; it only needs to be noted when interpreting the results. The ratio of the sample variances is 17.5 2 /20.1 2 = 0.76, which falls between 0.5 and 2 suggesting that the assumption of equality of population variances is reasonable. The appropriate test statistic is

We now substitute the sample data into the formula for the test statistic identified in Step 2. Before substituting, we will first compute Sp, the pooled estimate of the common standard deviation.

Notice that the pooled estimate of the common standard deviation, Sp, falls in between the standard deviations in the comparison groups (i.e., 17.5 and 20.1). Sp is slightly closer in value to the standard deviation in the women (20.1) as there were slightly more women in the sample.   Recall, Sp is a weight average of the standard deviations in the comparison groups, weighted by the respective sample sizes.  

Now the test statistic:

We reject H 0 because 2.66 > 1.960. We have statistically significant evidence at α=0.05 to show that there is a difference in mean systolic blood pressures between men and women. The p-value is p < 0.010.  

Here again we find that there is a statistically significant difference in mean systolic blood pressures between men and women at p < 0.010. Notice that there is a very small difference in the sample means (128.2-126.5 = 1.7 units), but this difference is beyond what would be expected by chance. Is this a clinically meaningful difference? The large sample size in this example is driving the statistical significance. A 95% confidence interval for the difference in mean systolic blood pressures is: 1.7 + 1.26 or (0.44, 2.96). The confidence interval provides an assessment of the magnitude of the difference between means whereas the test of hypothesis and p-value provide an assessment of the statistical significance of the difference.  

Above we performed a study to evaluate a new drug designed to lower total cholesterol. The study involved one sample of patients, each patient took the new drug for 6 weeks and had their cholesterol measured. As a means of evaluating the efficacy of the new drug, the mean total cholesterol following 6 weeks of treatment was compared to the NCHS-reported mean total cholesterol level in 2002 for all adults of 203. At the end of the example, we discussed the appropriateness of the fixed comparator as well as an alternative study design to evaluate the effect of the new drug involving two treatment groups, where one group receives the new drug and the other does not. Here, we revisit the example with a concurrent or parallel control group, which is very typical in randomized controlled trials or clinical trials (refer to the EP713 module on Clinical Trials).  

A new drug is proposed to lower total cholesterol. A randomized controlled trial is designed to evaluate the efficacy of the medication in lowering cholesterol. Thirty participants are enrolled in the trial and are randomly assigned to receive either the new drug or a placebo. The participants do not know which treatment they are assigned. Each participant is asked to take the assigned treatment for 6 weeks. At the end of 6 weeks, each patient's total cholesterol level is measured and the sample statistics are as follows.

Treatment

New Drug

15

195.9

28.7

Placebo

15

227.4

30.3

Is there statistical evidence of a reduction in mean total cholesterol in patients taking the new drug for 6 weeks as compared to participants taking placebo? We will run the test using the five-step approach.

H 0 : μ 1 = μ 2 H 1 : μ 1 < μ 2                         α=0.05

Because both samples are small (< 30), we use the t test statistic. Before implementing the formula, we first check whether the assumption of equality of population variances is reasonable. The ratio of the sample variances, s 1 2 /s 2 2 =28.7 2 /30.3 2 = 0.90, which falls between 0.5 and 2, suggesting that the assumption of equality of population variances is reasonable. The appropriate test statistic is:

This is a lower-tailed test, using a t statistic and a 5% level of significance. The appropriate critical value can be found in the t Table (in More Resources to the right). In order to determine the critical value of t we need degrees of freedom, df, defined as df=n 1 +n 2 -2 = 15+15-2=28. The critical value for a lower tailed test with df=28 and α=0.05 is -1.701 and the decision rule is: Reject H 0 if t < -1.701.

Now the test statistic,

We reject H 0 because -2.92 < -1.701. We have statistically significant evidence at α=0.05 to show that the mean total cholesterol level is lower in patients taking the new drug for 6 weeks as compared to patients taking placebo, p < 0.005.

The clinical trial in this example finds a statistically significant reduction in total cholesterol, whereas in the previous example where we had a historical control (as opposed to a parallel control group) we did not demonstrate efficacy of the new drug. Notice that the mean total cholesterol level in patients taking placebo is 217.4 which is very different from the mean cholesterol reported among all Americans in 2002 of 203 and used as the comparator in the prior example. The historical control value may not have been the most appropriate comparator as cholesterol levels have been increasing over time. In the next section, we present another design that can be used to assess the efficacy of the new drug.

Video - Comparison of Two Independent Samples With a Continuous Outcome (8:02)

Tests with Matched Samples, Continuous Outcome

In the previous section we compared two groups with respect to their mean scores on a continuous outcome. An alternative study design is to compare matched or paired samples. The two comparison groups are said to be dependent, and the data can arise from a single sample of participants where each participant is measured twice (possibly before and after an intervention) or from two samples that are matched on specific characteristics (e.g., siblings). When the samples are dependent, we focus on difference scores in each participant or between members of a pair and the test of hypothesis is based on the mean difference, μ d . The null hypothesis again reflects "no difference" and is stated as H 0 : μ d =0 . Note that there are some instances where it is of interest to test whether there is a difference of a particular magnitude (e.g., μ d =5) but in most instances the null hypothesis reflects no difference (i.e., μ d =0).  

The appropriate formula for the test of hypothesis depends on the sample size. The formulas are shown below and are identical to those we presented for estimating the mean of a single sample presented (e.g., when comparing against an external or historical control), except here we focus on difference scores.

Test Statistics for Testing H 0 : μ d =0

A new drug is proposed to lower total cholesterol and a study is designed to evaluate the efficacy of the drug in lowering cholesterol. Fifteen patients agree to participate in the study and each is asked to take the new drug for 6 weeks. However, before starting the treatment, each patient's total cholesterol level is measured. The initial measurement is a pre-treatment or baseline value. After taking the drug for 6 weeks, each patient's total cholesterol level is measured again and the data are shown below. The rightmost column contains difference scores for each patient, computed by subtracting the 6 week cholesterol level from the baseline level. The differences represent the reduction in total cholesterol over 4 weeks. (The differences could have been computed by subtracting the baseline total cholesterol level from the level measured at 6 weeks. The way in which the differences are computed does not affect the outcome of the analysis only the interpretation.)

1

215

205

10

2

190

156

34

3

230

190

40

4

220

180

40

5

214

201

13

6

240

227

13

7

210

197

13

8

193

173

20

9

210

204

6

10

230

217

13

11

180

142

38

12

260

262

-2

13

210

207

3

14

190

184

6

15

200

193

7

Because the differences are computed by subtracting the cholesterols measured at 6 weeks from the baseline values, positive differences indicate reductions and negative differences indicate increases (e.g., participant 12 increases by 2 units over 6 weeks). The goal here is to test whether there is a statistically significant reduction in cholesterol. Because of the way in which we computed the differences, we want to look for an increase in the mean difference (i.e., a positive reduction). In order to conduct the test, we need to summarize the differences. In this sample, we have

The calculations are shown below.  

1

10

100

2

34

1156

3

40

1600

4

40

1600

5

13

169

6

13

169

7

13

169

8

20

400

9

6

36

10

13

169

11

38

1444

12

-2

4

13

3

9

14

6

36

15

7

49

Is there statistical evidence of a reduction in mean total cholesterol in patients after using the new medication for 6 weeks? We will run the test using the five-step approach.

H 0 : μ d = 0 H 1 : μ d > 0                 α=0.05

NOTE: If we had computed differences by subtracting the baseline level from the level measured at 6 weeks then negative differences would have reflected reductions and the research hypothesis would have been H 1 : μ d < 0. 

  • Step 2 . Select the appropriate test statistic.

This is an upper-tailed test, using a t statistic and a 5% level of significance. The appropriate critical value can be found in the t Table at the right, with df=15-1=14. The critical value for an upper-tailed test with df=14 and α=0.05 is 2.145 and the decision rule is Reject H 0 if t > 2.145.

We now substitute the sample data into the formula for the test statistic identified in Step 2.

We reject H 0 because 4.61 > 2.145. We have statistically significant evidence at α=0.05 to show that there is a reduction in cholesterol levels over 6 weeks.  

Here we illustrate the use of a matched design to test the efficacy of a new drug to lower total cholesterol. We also considered a parallel design (randomized clinical trial) and a study using a historical comparator. It is extremely important to design studies that are best suited to detect a meaningful difference when one exists. There are often several alternatives and investigators work with biostatisticians to determine the best design for each application. It is worth noting that the matched design used here can be problematic in that observed differences may only reflect a "placebo" effect. All participants took the assigned medication, but is the observed reduction attributable to the medication or a result of these participation in a study.

Video - Hypothesis Testing With a Matched Sample and a Continuous Outcome (3:11)

Tests with Two Independent Samples, Dichotomous Outcome

There are several approaches that can be used to test hypotheses concerning two independent proportions. Here we present one approach - the chi-square test of independence is an alternative, equivalent, and perhaps more popular approach to the same analysis. Hypothesis testing with the chi-square test is addressed in the third module in this series: BS704_HypothesisTesting-ChiSquare.

In tests of hypothesis comparing proportions between two independent groups, one test is performed and results can be interpreted to apply to a risk difference, relative risk or odds ratio. As a reminder, the risk difference is computed by taking the difference in proportions between comparison groups, the risk ratio is computed by taking the ratio of proportions, and the odds ratio is computed by taking the ratio of the odds of success in the comparison groups. Because the null values for the risk difference, the risk ratio and the odds ratio are different, the hypotheses in tests of hypothesis look slightly different depending on which measure is used. When performing tests of hypothesis for the risk difference, relative risk or odds ratio, the convention is to label the exposed or treated group 1 and the unexposed or control group 2.      

For example, suppose a study is designed to assess whether there is a significant difference in proportions in two independent comparison groups. The test of interest is as follows:

H 0 : p 1 = p 2 versus H 1 : p 1 ≠ p 2 .  

The following are the hypothesis for testing for a difference in proportions using the risk difference, the risk ratio and the odds ratio. First, the hypotheses above are equivalent to the following:

  • For the risk difference, H 0 : p 1 - p 2 = 0 versus H 1 : p 1 - p 2 ≠ 0 which are, by definition, equal to H 0 : RD = 0 versus H 1 : RD ≠ 0.
  • If an investigator wants to focus on the risk ratio, the equivalent hypotheses are H 0 : RR = 1 versus H 1 : RR ≠ 1.
  • If the investigator wants to focus on the odds ratio, the equivalent hypotheses are H 0 : OR = 1 versus H 1 : OR ≠ 1.  

Suppose a test is performed to test H 0 : RD = 0 versus H 1 : RD ≠ 0 and the test rejects H 0 at α=0.05. Based on this test we can conclude that there is significant evidence, α=0.05, of a difference in proportions, significant evidence that the risk difference is not zero, significant evidence that the risk ratio and odds ratio are not one. The risk difference is analogous to the difference in means when the outcome is continuous. Here the parameter of interest is the difference in proportions in the population, RD = p 1 -p 2 and the null value for the risk difference is zero. In a test of hypothesis for the risk difference, the null hypothesis is always H 0 : RD = 0. This is equivalent to H 0 : RR = 1 and H 0 : OR = 1. In the research hypothesis, an investigator can hypothesize that the first proportion is larger than the second (H 1 : p 1 > p 2 , which is equivalent to H 1 : RD > 0, H 1 : RR > 1 and H 1 : OR > 1), that the first proportion is smaller than the second (H 1 : p 1 < p 2 , which is equivalent to H 1 : RD < 0, H 1 : RR < 1 and H 1 : OR < 1), or that the proportions are different (H 1 : p 1 ≠ p 2 , which is equivalent to H 1 : RD ≠ 0, H 1 : RR ≠ 1 and H 1 : OR ≠

1). The three different alternatives represent upper-, lower- and two-tailed tests, respectively.  

The formula for the test of hypothesis for the difference in proportions is given below.

Test Statistics for Testing H 0 : p 1 = p

                                     

The formula above is appropriate for large samples, defined as at least 5 successes (np > 5) and at least 5 failures (n(1-p > 5)) in each of the two samples. If there are fewer than 5 successes or failures in either comparison group, then alternative procedures, called exact methods must be used to estimate the difference in population proportions.

The following table summarizes data from n=3,799 participants who attended the fifth examination of the Offspring in the Framingham Heart Study. The outcome of interest is prevalent CVD and we want to test whether the prevalence of CVD is significantly higher in smokers as compared to non-smokers.

 

Free of CVD

History of CVD

Total

Non-Smoker

2,757

298

3,055

Current Smoker

663

81

744

Total

3,420

379

3,799

The prevalence of CVD (or proportion of participants with prevalent CVD) among non-smokers is 298/3,055 = 0.0975 and the prevalence of CVD among current smokers is 81/744 = 0.1089. Here smoking status defines the comparison groups and we will call the current smokers group 1 (exposed) and the non-smokers (unexposed) group 2. The test of hypothesis is conducted below using the five step approach.

H 0 : p 1 = p 2     H 1 : p 1 ≠ p 2                 α=0.05

  • Step 2.  Select the appropriate test statistic.  

We must first check that the sample size is adequate. Specifically, we need to ensure that we have at least 5 successes and 5 failures in each comparison group. In this example, we have more than enough successes (cases of prevalent CVD) and failures (persons free of CVD) in each comparison group. The sample size is more than adequate so the following formula can be used:

Reject H 0 if Z < -1.960 or if Z > 1.960.

We now substitute the sample data into the formula for the test statistic identified in Step 2. We first compute the overall proportion of successes:

We now substitute to compute the test statistic.

  • Step 5. Conclusion.

We do not reject H 0 because -1.960 < 0.927 < 1.960. We do not have statistically significant evidence at α=0.05 to show that there is a difference in prevalent CVD between smokers and non-smokers.  

A 95% confidence interval for the difference in prevalent CVD (or risk difference) between smokers and non-smokers as 0.0114 + 0.0247, or between -0.0133 and 0.0361. Because the 95% confidence interval for the risk difference includes zero we again conclude that there is no statistically significant difference in prevalent CVD between smokers and non-smokers.    

Smoking has been shown over and over to be a risk factor for cardiovascular disease. What might explain the fact that we did not observe a statistically significant difference using data from the Framingham Heart Study? HINT: Here we consider prevalent CVD, would the results have been different if we considered incident CVD?

A randomized trial is designed to evaluate the effectiveness of a newly developed pain reliever designed to reduce pain in patients following joint replacement surgery. The trial compares the new pain reliever to the pain reliever currently in use (called the standard of care). A total of 100 patients undergoing joint replacement surgery agreed to participate in the trial. Patients were randomly assigned to receive either the new pain reliever or the standard pain reliever following surgery and were blind to the treatment assignment. Before receiving the assigned treatment, patients were asked to rate their pain on a scale of 0-10 with higher scores indicative of more pain. Each patient was then given the assigned treatment and after 30 minutes was again asked to rate their pain on the same scale. The primary outcome was a reduction in pain of 3 or more scale points (defined by clinicians as a clinically meaningful reduction). The following data were observed in the trial.

New Pain Reliever

50

23

0.46

Standard Pain Reliever

50

11

0.22

We now test whether there is a statistically significant difference in the proportions of patients reporting a meaningful reduction (i.e., a reduction of 3 or more scale points) using the five step approach.  

H 0 : p 1 = p 2     H 1 : p 1 ≠ p 2              α=0.05

Here the new or experimental pain reliever is group 1 and the standard pain reliever is group 2.

We must first check that the sample size is adequate. Specifically, we need to ensure that we have at least 5 successes and 5 failures in each comparison group, i.e.,

In this example, we have min(50(0.46), 50(1-0.46), 50(0.22), 50(1-0.22)) = min(23, 27, 11, 39) = 11. The sample size is adequate so the following formula can be used

We reject H 0 because 2.526 > 1960. We have statistically significant evidence at a =0.05 to show that there is a difference in the proportions of patients on the new pain reliever reporting a meaningful reduction (i.e., a reduction of 3 or more scale points) as compared to patients on the standard pain reliever.

A 95% confidence interval for the difference in proportions of patients on the new pain reliever reporting a meaningful reduction (i.e., a reduction of 3 or more scale points) as compared to patients on the standard pain reliever is 0.24 + 0.18 or between 0.06 and 0.42. Because the 95% confidence interval does not include zero we concluded that there was a statistically significant difference in proportions which is consistent with the test of hypothesis result. 

Again, the procedures discussed here apply to applications where there are two independent comparison groups and a dichotomous outcome. There are other applications in which it is of interest to compare a dichotomous outcome in matched or paired samples. For example, in a clinical trial we might wish to test the effectiveness of a new antibiotic eye drop for the treatment of bacterial conjunctivitis. Participants use the new antibiotic eye drop in one eye and a comparator (placebo or active control treatment) in the other. The success of the treatment (yes/no) is recorded for each participant for each eye. Because the two assessments (success or failure) are paired, we cannot use the procedures discussed here. The appropriate test is called McNemar's test (sometimes called McNemar's test for dependent proportions).  

Vide0 - Hypothesis Testing With Two Independent Samples and a Dichotomous Outcome (2:55)

Here we presented hypothesis testing techniques for means and proportions in one and two sample situations. Tests of hypothesis involve several steps, including specifying the null and alternative or research hypothesis, selecting and computing an appropriate test statistic, setting up a decision rule and drawing a conclusion. There are many details to consider in hypothesis testing. The first is to determine the appropriate test. We discussed Z and t tests here for different applications. The appropriate test depends on the distribution of the outcome variable (continuous or dichotomous), the number of comparison groups (one, two) and whether the comparison groups are independent or dependent. The following table summarizes the different tests of hypothesis discussed here.

  • Continuous Outcome, One Sample: H0: μ = μ0
  • Continuous Outcome, Two Independent Samples: H0: μ1 = μ2
  • Continuous Outcome, Two Matched Samples: H0: μd = 0
  • Dichotomous Outcome, One Sample: H0: p = p 0
  • Dichotomous Outcome, Two Independent Samples: H0: p1 = p2, RD=0, RR=1, OR=1

Once the type of test is determined, the details of the test must be specified. Specifically, the null and alternative hypotheses must be clearly stated. The null hypothesis always reflects the "no change" or "no difference" situation. The alternative or research hypothesis reflects the investigator's belief. The investigator might hypothesize that a parameter (e.g., a mean, proportion, difference in means or proportions) will increase, will decrease or will be different under specific conditions (sometimes the conditions are different experimental conditions and other times the conditions are simply different groups of participants). Once the hypotheses are specified, data are collected and summarized. The appropriate test is then conducted according to the five step approach. If the test leads to rejection of the null hypothesis, an approximate p-value is computed to summarize the significance of the findings. When tests of hypothesis are conducted using statistical computing packages, exact p-values are computed. Because the statistical tables in this textbook are limited, we can only approximate p-values. If the test fails to reject the null hypothesis, then a weaker concluding statement is made for the following reason.

In hypothesis testing, there are two types of errors that can be committed. A Type I error occurs when a test incorrectly rejects the null hypothesis. This is referred to as a false positive result, and the probability that this occurs is equal to the level of significance, α. The investigator chooses the level of significance in Step 1, and purposely chooses a small value such as α=0.05 to control the probability of committing a Type I error. A Type II error occurs when a test fails to reject the null hypothesis when in fact it is false. The probability that this occurs is equal to β. Unfortunately, the investigator cannot specify β at the outset because it depends on several factors including the sample size (smaller samples have higher b), the level of significance (β decreases as a increases), and the difference in the parameter under the null and alternative hypothesis.    

We noted in several examples in this chapter, the relationship between confidence intervals and tests of hypothesis. The approaches are different, yet related. It is possible to draw a conclusion about statistical significance by examining a confidence interval. For example, if a 95% confidence interval does not contain the null value (e.g., zero when analyzing a mean difference or risk difference, one when analyzing relative risks or odds ratios), then one can conclude that a two-sided test of hypothesis would reject the null at α=0.05. It is important to note that the correspondence between a confidence interval and test of hypothesis relates to a two-sided test and that the confidence level corresponds to a specific level of significance (e.g., 95% to α=0.05, 90% to α=0.10 and so on). The exact significance of the test, the p-value, can only be determined using the hypothesis testing approach and the p-value provides an assessment of the strength of the evidence and not an estimate of the effect.

Answers to Selected Problems

Dental services problem - bottom of page 5.

  • Step 1: Set up hypotheses and determine the level of significance.

α=0.05

  • Step 2: Select the appropriate test statistic.

First, determine whether the sample size is adequate.

Therefore the sample size is adequate, and we can use the following formula:

  • Step 3: Set up the decision rule.

Reject H0 if Z is less than or equal to -1.96 or if Z is greater than or equal to 1.96.

  • Step 4: Compute the test statistic
  • Step 5: Conclusion.

We reject the null hypothesis because -6.15<-1.96. Therefore there is a statistically significant difference in the proportion of children in Boston using dental services compated to the national proportion.

Statistics Tutorial

Descriptive statistics, inferential statistics, stat reference, statistics - hypothesis testing a proportion.

A population proportion is the share of a population that belongs to a particular category .

Hypothesis tests are used to check a claim about the size of that population proportion.

Hypothesis Testing a Proportion

The following steps are used for a hypothesis test:

  • Check the conditions
  • Define the claims
  • Decide the significance level
  • Calculate the test statistic

For example:

  • Population : Nobel Prize winners
  • Category : Born in the United States of America

And we want to check the claim:

" More than 20% of Nobel Prize winners were born in the US"

By taking a sample of 40 randomly selected Nobel Prize winners we could find that:

10 out of 40 Nobel Prize winners in the sample were born in the US

The sample proportion is then: \(\displaystyle \frac{10}{40} = 0.25\), or 25%.

From this sample data we check the claim with the steps below.

1. Checking the Conditions

The conditions for calculating a confidence interval for a proportion are:

  • The sample is randomly selected
  • Being in the category
  • Not being in the category
  • 5 members in the category
  • 5 members not in the category

In our example, we randomly selected 10 people that were born in the US.

The rest were not born in the US, so there are 30 in the other category.

The conditions are fulfilled in this case.

Note: It is possible to do a hypothesis test without having 5 of each category. But special adjustments need to be made.

2. Defining the Claims

We need to define a null hypothesis (\(H_{0}\)) and an alternative hypothesis (\(H_{1}\)) based on the claim we are checking.

The claim was:

In this case, the parameter is the proportion of Nobel Prize winners born in the US (\(p\)).

The null and alternative hypothesis are then:

Null hypothesis : 20% of Nobel Prize winners were born in the US.

Alternative hypothesis : More than 20% of Nobel Prize winners were born in the US.

Which can be expressed with symbols as:

\(H_{0}\): \(p = 0.20 \)

\(H_{1}\): \(p > 0.20 \)

This is a ' right tailed' test, because the alternative hypothesis claims that the proportion is more than in the null hypothesis.

If the data supports the alternative hypothesis, we reject the null hypothesis and accept the alternative hypothesis.

Advertisement

3. Deciding the Significance Level

The significance level (\(\alpha\)) is the uncertainty we accept when rejecting the null hypothesis in a hypothesis test.

The significance level is a percentage probability of accidentally making the wrong conclusion.

Typical significance levels are:

  • \(\alpha = 0.1\) (10%)
  • \(\alpha = 0.05\) (5%)
  • \(\alpha = 0.01\) (1%)

A lower significance level means that the evidence in the data needs to be stronger to reject the null hypothesis.

There is no "correct" significance level - it only states the uncertainty of the conclusion.

Note: A 5% significance level means that when we reject a null hypothesis:

We expect to reject a true null hypothesis 5 out of 100 times.

4. Calculating the Test Statistic

The test statistic is used to decide the outcome of the hypothesis test.

The test statistic is a standardized value calculated from the sample.

The formula for the test statistic (TS) of a population proportion is:

\(\displaystyle \frac{\hat{p} - p}{\sqrt{p(1-p)}} \cdot \sqrt{n} \)

\(\hat{p}-p\) is the difference between the sample proportion (\(\hat{p}\)) and the claimed population proportion (\(p\)).

\(n\) is the sample size.

In our example:

The claimed (\(H_{0}\)) population proportion (\(p\)) was \( 0.20 \)

The sample size (\(n\)) was \(40\)

So the test statistic (TS) is then:

\(\displaystyle \frac{0.25-0.20}{\sqrt{0.2(1-0.2)}} \cdot \sqrt{40} = \frac{0.05}{\sqrt{0.2(0.8)}} \cdot \sqrt{40} = \frac{0.05}{\sqrt{0.16}} \cdot \sqrt{40} \approx \frac{0.05}{0.4} \cdot 6.325 = \underline{0.791}\)

You can also calculate the test statistic using programming language functions:

With Python use the scipy and math libraries to calculate the test statistic for a proportion.

With R use the built-in prop.test() function to calculate the test statistic for a proportion.

5. Concluding

There are two main approaches for making the conclusion of a hypothesis test:

  • The critical value approach compares the test statistic with the critical value of the significance level.
  • The P-value approach compares the P-value of the test statistic and with the significance level.

Note: The two approaches are only different in how they present the conclusion.

The Critical Value Approach

For the critical value approach we need to find the critical value (CV) of the significance level (\(\alpha\)).

For a population proportion test, the critical value (CV) is a Z-value from a standard normal distribution .

This critical Z-value (CV) defines the rejection region for the test.

The rejection region is an area of probability in the tails of the standard normal distribution.

Because the claim is that the population proportion is more than 20%, the rejection region is in the right tail:

Choosing a significance level (\(\alpha\)) of 0.05, or 5%, we can find the critical Z-value from a Z-table , or with a programming language function:

Note: The functions find the Z-value for an area from the left side.

To find the Z-value for a right tail we need to use the function on the area to the left of the tail (1-0.05 = 0.95).

With Python use the Scipy Stats library norm.ppf() function find the Z-value for an \(\alpha\) = 0.05 in the right tail.

With R use the built-in qnorm() function to find the Z-value for an \(\alpha\) = 0.05 in the right tail.

Using either method we can find that the critical Z-value is \(\approx \underline{1.6449}\)

For a right tailed test we need to check if the test statistic (TS) is bigger than the critical value (CV).

If the test statistic is bigger than the critical value, the test statistic is in the rejection region .

When the test statistic is in the rejection region, we reject the null hypothesis (\(H_{0}\)).

Here, the test statistic (TS) was \(\approx \underline{0.791}\) and the critical value was \(\approx \underline{1.6449}\)

Here is an illustration of this test in a graph:

Since the test statistic was smaller than the critical value we do not reject the null hypothesis.

This means that the sample data does not support the alternative hypothesis.

And we can summarize the conclusion stating:

The sample data does not support the claim that "more than 20% of Nobel Prize winners were born in the US" at a 5% significance level .

The P-Value Approach

For the P-value approach we need to find the P-value of the test statistic (TS).

If the P-value is smaller than the significance level (\(\alpha\)), we reject the null hypothesis (\(H_{0}\)).

The test statistic was found to be \( \approx \underline{0.791} \)

For a population proportion test, the test statistic is a Z-Value from a standard normal distribution .

Because this is a right tailed test, we need to find the P-value of a Z-value bigger than 0.791.

We can find the P-value using a Z-table , or with a programming language function:

Note: The functions find the P-value (area) to the left side of Z-value.

To find the P-value for a right tail we need to subtract the left area from the total area: 1 - the output of the function.

With Python use the Scipy Stats library norm.cdf() function find the P-value of a Z-value bigger than 0.791:

With R use the built-in pnorm() function find the P-value of a Z-value bigger than 0.791:

Using either method we can find that the P-value is \(\approx \underline{0.2145}\)

This tells us that the significance level (\(\alpha\)) would need to be bigger than 0.2145, or 21.45%, to reject the null hypothesis.

This P-value is bigger than any of the common significance levels (10%, 5%, 1%).

So the null hypothesis is kept at all of these significance levels.

The sample data does not support the claim that "more than 20% of Nobel Prize winners were born in the US" at a 10%, 5%, or 1% significance level .

Note: It may still be true that the real population proportion is more than 20%.

But there was not strong enough evidence to support it with this sample.

Calculating a P-Value for a Hypothesis Test with Programming

Many programming languages can calculate the P-value to decide outcome of a hypothesis test.

Using software and programming to calculate statistics is more common for bigger sets of data, as calculating manually becomes difficult.

The P-value calculated here will tell us the lowest possible significance level where the null-hypothesis can be rejected.

With Python use the scipy and math libraries to calculate the P-value for a right tailed hypothesis test for a proportion.

Here, the sample size is 40, the occurrences are 10, and the test is for a proportion bigger than 0.20.

With R use the built-in prop.test() function find the P-value for a right tailed hypothesis test for a proportion.

Note: The conf.level in the R code is the reverse of the significance level.

Here, the significance level is 0.05, or 5%, so the conf.level is 1-0.05 = 0.95, or 95%.

Left-Tailed and Two-Tailed Tests

This was an example of a right tailed test, where the alternative hypothesis claimed that parameter is bigger than the null hypothesis claim.

You can check out an equivalent step-by-step guide for other types here:

  • Left-Tailed Test
  • Two-Tailed Test

Get Certified

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

  • Number Theory
  • Data Structures
  • Cornerstones

Hypothesis Testing Basics & One Sample Tests for Proportions

Introduction to hypothesis testing.

Hypothesis testing is a decision-making process by which we analyze a sample in an attempt to distinguish between results that can easily occur and results that are unlikely.

One begins with a claim or statement -- the reason for the study. For example, the claim might be "This coin in my pocket is fair."

Then we design a study to test the claim. In the case of the coin, we might decide to flip the coin 100 times.

Consider what could happen as a result of flipping that coin 100 times:

Suppose we saw that 99 out of 100 times, the flip resulted in "heads". Upon seeing this, no one in their right mind would still believe that the coin was fair. That notion would be completely rejected. A fair coin should come up "heads" roughly 50% of the time. The probability that a fair coin would come up "heads" 99 times out of 100 is so ridiculously small, that for all practical purposes we should never see it happen. The fact that we saw it happen constitutes significant statistical "evidence" that an assumption the coin is fair is very, very wrong.

If on the other hand, if one saw 54 out of 100 flips result in "heads", then -- while this doesn't exactly match our expectation that a fair coin should come up heads 50 out of 100 times -- it is not that far off the mark. It may be that we have a fair coin and the amount we are off is just due to the random nature of coin flips. It may also be that our coin is only slightly unfair -- perhaps coming up heads only 55% of the time. We simply don't know. We have no evidence either way. There is no reason for a person who previously believed the coin was fair, to change their mind. There is no significant statistical "evidence" that the coin is not fair.

These two circumstances capture the essence of all hypothesis testing...

We hold some belief of something before we start our experiment or study (e.g., the coin is fair). This belief might be based on our experience or history. It might be the more conservative thing to believe, given two possibilities. It might be categorized as a "no-change-has-happened" belief. Whatever it is -- if we see a highly unusual difference between what is expected under the assumption of that belief and what actually happens as a result of our sampling or experimentation, we consequently reject that belief. Seeing a more common outcome under the assumption of that belief, however, does not result in any rejection of that belief.

Attaching some statistical verbiage to these ideas, the "belief" described in the previous paragraph is called the null hypothesis , $H_0$. The alternative hypothesis , $H_1$, is what one will be forced to conclude is more likely the case after a rejection of the null hypothesis.

These hypotheses are typically stated in terms of values of population parameters, with the null hypothesis stating that the parameter in question "equals" some specific value, while the alternative hypothesis says this parameter is instead either not equal to, greater than, or less than that same specific value, depending on the context.

Importantly, the "claim" (the reason for the study) might sometimes be the null hypothesis, while other times it might be the alternative hypothesis. A common error among students learning statistics for the first time is to assume the claim is always just one of these.

Hypothesis Testing Using $p$-values

Returning to the example concerned with deciding whether a coin is fair or not based on flipping it 100 times, and assuming $p$ is the true proportion of heads that should be seen upon flipping the coin in our pocket, we first write the null and alternative hypotheses for our coin tossing experiment in the following way: $$H_0 : p = 0.50; \quad H_1 : p \neq 0.50$$

Recall that under the assumption of the null hypothesis, and as long as $np \ge 5$ and $nq \ge 5$, sample proportions $\widehat{p}$ should "pile up" in an approximately normal distribution with $$\mu = p = 0.5 \quad \textrm{ and } \quad \sigma = \sqrt{\frac{pq}{n}} = \sqrt{\frac{(0.5)(0.5)}{100}} = 0.05$$

Suppose as a result of our flipping the coin 100 times, we flipped heads $63$ times.

Then, the $z$-score for the corresponding sample proportion $\widehat{p} = 63/100 = 0.63$ is $$z_{0.63} = \frac{x - \mu}{\sigma} = \frac{0.63 - 0.5}{0.05} = 2.6$$ As a matter of verbiage -- for a hypothesis test involving a single proportion, the $z$-score associated with the sample proportion under consideration is called the test statistic . More generally, a test statistic indicates where on the related distribution the sample statistic falls.

Now we confront the question "Is what we saw unlikely enough that we should reject the null hypothesis? That is to say, does this particular observed $\widehat{p}$ happen so rarely when $p = 0.5$ that seeing it happen provides significant evidence that the $p \neq 0.5$?"

Towards this end, we consider the probability of seeing our test statistic, $z_{0.63} = 2.6$ -- or something even more extreme in the sense of the alternative hypothesis, in this standard normal distribution.

These "even more extreme" values (shaded red in the below diagram) certainly include those $z$ scores farther in the tail on the right (i.e., $z > 2.6$), but they also include those $z$-scores at a similar distance from the mean in the left tail of the distribution (i.e., $z < -2.6$). This is due to the fact that our alternative hypothesis simply says $p \neq 0.5$ -- it does not specify that $p$ is higher or lower than $0.5$. Had the alternative hypothesis been different, we might have limited ourselves to those $z$-scores in only one tail.

hypothesis testing with proportions

We can easily find $P_{\textrm{std norm}}(z 2.6)$ (i.e., the area shaded red above) with either a standard normal table, calculator, or a statistical programming environment like R.

As it turns out, $$P_{\textrm{std norm}}(z 2.6) \doteq 0.00932$$

Thus the probability, under the assumption that $p = 0.5$, that a sample will produce a $\widehat{p}$ as rare (or rarer) than what we saw in our one sample is only $0.00932$.

The probability just found is known as the p-value for the hypothesis test. More generally, the p-value is the probability of the observed outcome or an outcome at least that unusual (in the sense of the alternative hypothesis), under the assumption that the null hypothesis is true.

In this way, the p-value quantifies just how unusual what we saw actually was.

The question remains, however -- was the p-value we found small enough that we should conclude $p \neq 0.5$. (i.e., thus rejecting the null hypothesis)?

Understand that as long as the p-value is not zero, there is some possibility that $p = 0.50$ is actually true, and what we saw was just due to random chance. However, we want to make a decision -- one way or the other -- as to whether we believe this is a fair coin or not. We need to establish a cut-off probability, so that if the p-value is less than this cut-off, we consider the observed outcome unusual enough that it constitutes significant evidence that the null hypothesis should be rejected. This cut-off probability is called the significance level , and is denoted by $\alpha$.

As a standard, when a significance level is not specified at the outset, one typically uses $\alpha = 0.05$. Under this standard, observing something that happens less than 5% of the time is considered unusual enough to reject the null hypothesis.

Certainly, in this case we have $\textrm{p-value } \doteq 0.00932 < 0.05 = \alpha$ and the null hypothesis should be rejected. We indeed have statistically significant evidence that $p \neq 0.50$ and that the coin is consequently not a fair coin.

Hypothesis Testing Using Critical Values

Continuing with our the previous example, note that if all we care about is making a decision as to whether or not we believe the coin is fair, then we don't actually need the exact value of the p-value -- we just need to know if it is less than the significance level, $\alpha$.

With this in mind, recall that we know in a standard normal distribution, by the Empirical Rule, roughly 95% of the distribution falls between $z = -2$ and $z = 2$. A slightly better approximation puts this 95% in the region where $-1.96 \lt z \lt 1.96$. That leaves 5% of the distribution in the tails, where $z 1.96$ (i.e., the area outside the blue dashed lines below).

hypothesis testing with proportions

It should be patently obvious that if the test statistic (i.e., $z_{0.63} = 2.6$) falls in this region, the p-value (which agrees with the area of the red region above) must be smaller than 5%. Thus, we can immediately reject the null hypothesis, knowing $p \lt 0.05 = \alpha$.

The region of the distribution where it is unlikely for the test statistic to fall if the null hypothesis is indeed true (here, outside of $z = \pm1.96$) is called the rejection region , and the boundaries of the rejection region are known as critical values .

This (more traditional) way of performing a hypothesis test is certainly simpler to perform, especially in the absence of a calculator or software that can help with the calculation of the $p$-value. Although the lack of knowledge of the $p$-value makes comparing how significant results are relative to each other a bit more difficult.

Hypothesis Testing Using a Confidence Interval

There is one more way to perform a hypothesis test. It is only appropriate for two-tailed tests, but is simple to perform:

Simply find a confidence interval with confidence level of $(1-\alpha)$ where $\alpha$ is the significance level of the hypothesis test. Then, reject $H_0$ if the hypothesized population parameter (e.g., a proportion or mean) is not in the confidence interval.

This method of hypothesis testing can sometimes (very rarely) result in a different conclusion than the other two methods, as the confidence interval is built from an approximation of the standard deviation using the sample statistic ($\widehat{p}$, for example) as opposed to using the hypothesized population parameter (e.g. the proportion $p$ in the examples discussed here) to calculate the standard deviation.

Making an Inference

Regardless of whether you use $p$-values, critical values, or confidence intervals to conclude whether or not the null hypothesis should be rejected -- once this is done, it is time to make an inference -- that is to say, it is time to communicate what your conclusion says about the original claim.

When forming an inference, one should try to phrase it in a manner easily digested by someone that doesn't know a lot about statistics. In particular, one should not use words like "null hypothesis", "p-value", "significance level", etc.

If the claim is the null hypothesis, you can start your inference with " There is enough evidence to reject the claim that... " if you rejected the null hypothesis, and with " There is not enough evidence to reject the claim that... " if you failed to reject the null hypothesis.

If the claim is the alternative hypothesis, you can instead start your inference with " There is enough evidence to support the claim that... " if you rejected the null hypothesis, and with " There is not enough evidence to support the claim that... " if you failed to reject the null hypothesis.

Alternatively, you can use phrases like " significantly different ", " significantly higher ", or " significantly lower " in the statement of your inference.

Very importantly -- one should never use the word "prove" in an inference. No matter the result of the hypothesis test, there is always a possibility of error. For example, at a significance level of $0.05$, one should absolutely expect that one in twenty experiments/observations will produce a p-value less than that $0.05$, which could then be erroneously deemed "statistically significant evidence" -- a point humorously driven home by this xkcd.com comic strip .

Indeed, there are two types of errors we could make when conducting a hypothesis test. We could -- as just described -- mistakenly reject a true null hypothesis (known as a Type I error ), or we could also fail to reject a false hypothesis (known as a Type II error ). Sadly, these firmly entrenched names for the types of errors one might commit are not very descriptive and consequently can easily be confused with each another. As a useful way to keep them straight, one might remember Aesop's fable of The Boy Who Cried Wolf" . In part I of this story, the villagers commit a Type I error by reacting to the presence of a wolf when there is none. In part II of this story, the villagers commit a Type II error by failing to react when there actually is a wolf.

The probability of a Type I error is, of course, the significance level for the test, $\alpha$. The probability of a Type II error is denoted by $\beta$, and is impossible to calculate without actually knowing the actual value of the population parameter in question.

As one last bit of verbiage, the probability of rejecting a false null hypothesis is consequently $1 - \beta$, and is known as the power of the test . We can increase the power of a test by either increasing the sample size $n$, or the significance level, $\alpha$.

Teach yourself statistics

Hypothesis Test of a Proportion (Small Sample)

This lesson explains how to test a hypothesis about a proportion when a simple random sample has fewer than 10 successes or 10 failures - a situation that often occurs with small samples. (In a previous lesson , we showed how to conduct a hypothesis test for a proportion when a simple random sample includes at least 10 successes and 10 failures.)

The approach described in this lesson is appropriate, as long as the sample includes at least one success and one failure. The key steps are:

  • Formulate the hypotheses to be tested. This means stating the null hypothesis and the alternative hypothesis .
  • Determine the sampling distribution of the proportion. If the sample proportion is the outcome of a binomial experiment , the sampling distribution will be binomial. If it is the outcome of a hypergeometric experiment , the sampling distribution will be hypergeometric.
  • Specify the significance level . (Researchers often set the significance level equal to 0.05 or 0.01, although other values may be used.)
  • Based on the hypotheses, the sampling distribution, and the significance level, define the region of acceptance .
  • Test the null hypothesis. If the sample proportion falls within the region of acceptance, do not reject the null hypothesis; otherwise, reject the null hypothesis.

The following examples illustrate how to test hypotheses with small samples. The first example involves a binomial experiment; and the second example, a hypergeometric experiment.

Example 1: Sampling With Replacement

Suppose an urn contains 30 marbles. Some marbles are red, and the rest are green. A researcher hypothesizes that the urn contains 15 or more red marbles. The researcher randomly samples five marbles, with replacement , from the urn. Two of the selected marbles are red, and three are green. Based on the sample results, should the researcher reject the null hypothesis? Use a significance level of 0.20.

Solution: There are five steps in conducting a hypothesis test, as described in the previous section. We work through each of the five steps below:

Null hypothesis: P >= 0.50

Alternative hypothesis: P < 0.50

Given those inputs (a binomial distribution where the true population proportion is equal to 0.50), the sampling distribution of the proportion can be determined. It appears in the table below, which shows individual probabilities for single events and cumulative probabilities for multiple events. (Elsewhere on this website, we showed how to compute binomial probabilities that form the body of the table.)

Number of red marbles in sample Sample prop Prob Cumulative probability
0 0.0 0.03125 0.03125
1 0.2 0.15625 0.1875
2 0.4 0.3125 0.5
3 0.6 0.3125 0.8125
4 0.8 0.15625 0.96875
5 1.0 0.03125 1.00
  • Specify significance level . The significance level was set at 0.20. (This means that the probability of making a Type I error is 0.20, assuming that the null hypothesis is true.)

However, we can define a region of acceptance for which the significance level would be no more than 0.20. From the table, we see that if the true population proportion is equal to 0.50, we would be very unlikely to pick 0 or 1 red marble in our sample of 5 marbles. The probability of selecting 1 or 0 red marbles would be 0.1875. Therefore, if we let the significance level equal 0.1875, we can define the region of rejection as any sampled outcome that includes only 0 or 1 red marble (i.e., a sampled proportion equal to 0 or 0.20). We can define the region of acceptance as any sampled outcome that includes at least 2 red marbles. This is equivalent to a sampled proportion that is greater than or equal to 0.40.

  • Test the null hypothesis . Since the sample proportion (0.40) is within the region of acceptance, we cannot reject the null hypothesis.

Example 2: Sampling Without Replacement

The Acme Advertising company has 25 clients. Account executives at Acme claim that 80 percent of these clients are very satisfied with the service they receive. To test that claim, Acme's CEO commissions a survey of 10 clients. Survey participants are randomly sampled, without replacement , from the client population. Six of the ten sampled customers (i.e., 60 percent) say that they are very satisfied. Based on the sample results, should the CEO accept or reject the hypothesis that 80 percent of Acme's clients are very satisfied. Use a significance level of 0.10.

Null hypothesis: P >= 0.80

Alternative hypothesis: P < 0.80

Given those inputs (a hypergeometric distribution where 20 of 25 clients are very satisfied), the sampling distribution of the proportion can be determined. It appears in the table below, which shows individual probabilities for single events and cumulative probabilities for multiple events. (Elsewhere on this website, we showed how to compute hypergeometric probabilities that form the body of the table.)

Number of satisfied clients in sample Sample prop Prob Cumulative probability
4 or less 0.4 or less 0.00 0.00
5 0.5 0.00474 0.00474
6 0.6 0.05929 0.06403
7 0.7 0.23715 0.30119
8 0.8 0.38538 0.68656
9 0.9 0.25692 0.94348
10 1.0 0.05652 1.00
  • Specify significance level . The significance level was set at 0.10. (This means that the probability of making a Type I error is 0.10, assuming that the null hypothesis is true.)

However, we can define a region of acceptance for which the significance level would be no more than 0.10. From the table, we see that if the true proportion of very satisfied clients is equal to 0.80, we would be very unlikely to have fewer than 7 very satisfied clients in our sample. The probability of having 6 or fewer very satisfied clients in the sample would be 0.064. Therefore, if we let the significance level equal 0.064, we can define the region of rejection as any sampled outcome that includes 6 or fewer very satisfied customers. We can define the region of acceptance as any sampled outcome that includes 7 or more very satisfied customers. This is equivalent to a sample proportion that is greater than or equal to 0.70.

  • Test the null hypothesis . Since the sample proportion (0.60) is outside the region of acceptance, we cannot accept the null hypothesis at the 0.064 level of significance.
  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Mathematics
  • Probability and Statistics

How to Perform Hypothesis Testing for a Proportion

Last Updated: July 31, 2023

This article was co-authored by Joseph Quinones . Joseph Quinones is a Physics Teacher working at South Bronx Community Charter High School. Joseph specializes in astronomy and astrophysics and is interested in science education and science outreach, currently practicing ways to make physics accessible to more students with the goal of bringing more students of color into the STEM fields. He has experience working on Astrophysics research projects at the Museum of Natural History (AMNH). Joseph recieved his Bachelor's degree in Physics from Lehman College and his Masters in Physics Education from City College of New York (CCNY). He is also a member of a network called New York City Men Teach. This article has been viewed 36,290 times.

Hypothesis testing for a proportion is used to determine if a sampled proportion is significantly different from a specified population proportion. For example, if you expect the proportion of male births to be 50 percent, but the actual proportion of male births is 53 percent in a sample of 1000 births. Is this significantly different from the hypothesized population parameter? To find out, follow these steps.

Step 1 Formulate your research question.

  • Are there more than 50 percent of Americans who self-identify as liberal?
  • Is the percentage of defects in a given manufacturing plant more than 5%?
  • Is the proportion of babies born male different from 50 percent?
  • Are there more Americans who self-identify as liberal than as conservative? (Use hypothesis testing for 2 proportions instead.)
  • Is the mean number of defects in a given manufacturing plant more than 50 per month? (Use hypothesis testing for one sample t-test instead.)
  • Are male births related to paternal age? (Use chi-square test for independence instead.)

Step 2 Check to see if the following assumptions are met:

  • Simple random sampling is used.
  • Each sample point can result in only one of two possible outcomes. These outcomes are called successes and failures.
  • The sample includes at least 10 successes and 10 failures.
  • The population size is at least 20 times as big as the sample size.

Step 3 State the null hypothesis and the alternative hypothesis.

  • Right-tailed: Research question: Is the sample proportion greater than the hypothesized population proportion? Your hypotheses would be stated as follows: H0: p<=p0; Ha: p>p0.
  • Left-tailed: Research question: Is the sample proportion less than the hypothesized population proportion? Your hypotheses would be stated as follows: H0: p>=p0; Ha: p<p0.
  • Two-tailed: Research question: Is the sample proportion different from the hypothesized population proportion? Your hypotheses would be stated as follows: H0: p=p0; Ha: p<>p0.
  • In your example, you can use a two-tailed test to see if the sample proportion of male births, 0.53, is different from the hypothesized population proportion of 0.50. So H0: p=0.50; Ha: p<>0.50. Typically, if there is no a priori reason to believe that any differences must be unidirectional, the two-tailed test is preferred as it is a more stringent test.

Step 4 Set an appropriate significance level (alpha).

  • In our example, p=0.53, p0=0.50, and n=1000. s = sqrt(0.50*(1-0.50)/1000) = 0.0158. the test statistic is z = (0.53-0.50)/0.0158 = 1.8974.

Step 6 Convert the test statistic to a p value.

  • Normal distribution probability z table. It is important to read the table description to note what probability is listed by the table. Some tables list cumulative (left side) area, others list right tail area, still others list only area from mean up to a positive z value.
  • Excel. The excel function =norm.s.dist(z,cumulative). Substitute the numeric value for z and "true" for cumulative. This excel formula gives cumulative area to the left of a given z value. For your example, you would use the formula =norm.s.dist(1.8974,true) to find the cumulative left side area, which includes the left tail and the body. (Body is the area from -z to z.) You can subtract this from 1 to find the right tail area. Since your example is 2-tailed, you would then multiply by 2. A formula for p can be =2*(1-norm.s.dist(1.8974,true)). The output is 0.0578.
  • Texas Instrument calculator, such as TI-83 or TI-84.
  • Online normal distribution calculators.

Step 7 Decide between null hypothesis or alternative hypothesis.

Expert Q&A

You Might Also Like

Find Standard Deviation on the TI–84

Expert Interview

hypothesis testing with proportions

Thanks for reading our article! If you’d like to learn more about teaching, check out our in-depth interview with Joseph Quinones .

  • ↑ http://stattrek.com/hypothesis-test/proportion.aspx?tutorial=ap
  • ↑ http://blog.minitab.com/blog/michelle-paret/alphas-p-values-confidence-intervals-oh-my

About This Article

Joseph Quinones

  • Send fan mail to authors

Reader Success Stories

Shanaya Malik

Shanaya Malik

Jun 29, 2019

Did this article help you?

hypothesis testing with proportions

Featured Articles

Enjoy Your Preteen Years

Trending Articles

"Hot to Go!" by Chappell Roan: The Flirtatious Lyrics & Their Meaning

Watch Articles

Make French Fries

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Level up your tech skills and stay ahead of the curve

hypothesis testing with proportions

hypothesis testing with proportions

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

6a.2 - steps for hypothesis tests, the logic of hypothesis testing section  .

A hypothesis, in statistics, is a statement about a population parameter, where this statement typically is represented by some specific numerical value. In testing a hypothesis, we use a method where we gather data in an effort to gather evidence about the hypothesis.

How do we decide whether to reject the null hypothesis?

  • If the sample data are consistent with the null hypothesis, then we do not reject it.
  • If the sample data are inconsistent with the null hypothesis, but consistent with the alternative, then we reject the null hypothesis and conclude that the alternative hypothesis is true.

Six Steps for Hypothesis Tests Section  

In hypothesis testing, there are certain steps one must follow. Below these are summarized into six such steps to conducting a test of a hypothesis.

  • Set up the hypotheses and check conditions : Each hypothesis test includes two hypotheses about the population. One is the null hypothesis, notated as \(H_0 \), which is a statement of a particular parameter value. This hypothesis is assumed to be true until there is evidence to suggest otherwise. The second hypothesis is called the alternative, or research hypothesis, notated as \(H_a \). The alternative hypothesis is a statement of a range of alternative values in which the parameter may fall. One must also check that any conditions (assumptions) needed to run the test have been satisfied e.g. normality of data, independence, and number of success and failure outcomes.
  • Decide on the significance level, \(\alpha \): This value is used as a probability cutoff for making decisions about the null hypothesis. This alpha value represents the probability we are willing to place on our test for making an incorrect decision in regards to rejecting the null hypothesis. The most common \(\alpha \) value is 0.05 or 5%. Other popular choices are 0.01 (1%) and 0.1 (10%).
  • Calculate the test statistic: Gather sample data and calculate a test statistic where the sample statistic is compared to the parameter value. The test statistic is calculated under the assumption the null hypothesis is true and incorporates a measure of standard error and assumptions (conditions) related to the sampling distribution.
  • Calculate probability value (p-value), or find the rejection region: A p-value is found by using the test statistic to calculate the probability of the sample data producing such a test statistic or one more extreme. The rejection region is found by using alpha to find a critical value; the rejection region is the area that is more extreme than the critical value. We discuss the p-value and rejection region in more detail in the next section.
  • Make a decision about the null hypothesis: In this step, we decide to either reject the null hypothesis or decide to fail to reject the null hypothesis. Notice we do not make a decision where we will accept the null hypothesis.
  • State an overall conclusion : Once we have found the p-value or rejection region, and made a statistical decision about the null hypothesis (i.e. we will reject the null or fail to reject the null), we then want to summarize our results into an overall conclusion for our test.

We will follow these six steps for the remainder of this Lesson. In the future Lessons, the steps will be followed but may not be explained explicitly.

Step 1 is a very important step to set up correctly. If your hypotheses are incorrect, your conclusion will be incorrect. In this next section, we practice with Step 1 for the one sample situations.

IMAGES

  1. Hypothesis Testing

    hypothesis testing with proportions

  2. Hypothesis Testing for Proportions

    hypothesis testing with proportions

  3. PPT

    hypothesis testing with proportions

  4. Hypothesis Test for Two Proportions

    hypothesis testing with proportions

  5. Hypothesis Testing with Proportions

    hypothesis testing with proportions

  6. How to Perform Hypothesis Testing for a Proportion: 8 Steps

    hypothesis testing with proportions

VIDEO

  1. stats 10.2 hw help

  2. Hypothesis Testing for Proportions

  3. Two Sample Hypothesis Testing Proportions

  4. Hypothesis testing for proportions (small sample)

  5. 3-4_Hypothesis Testing for Two Proportions

  6. Hypothesis Testing for Two Proportions

COMMENTS

  1. 8.4: Hypothesis Test Examples for Proportions

    First, determine what type of test this is, set up the hypothesis test, find the p-value p -value, sketch the graph, and state your conclusion. Answer. Since the problem is about percentages, this is a test of single population proportions. H0: p = 0.85 H 0: p = 0.85. Ha: p ≠ 0.85 H a: p ≠ 0.85. p = 0.7554 p = 0.7554.

  2. Hypothesis Testing for Means & Proportions

    Hypothesis testing with the chi-square test is addressed in the third module in this series: BS704_HypothesisTesting-ChiSquare. In tests of hypothesis comparing proportions between two independent groups, one test is performed and results can be interpreted to apply to a risk difference, relative risk or odds ratio.

  3. 6a.4

    Lesson 6a: Hypothesis Testing for One-Sample Proportion. 6a.1 - Introduction to Hypothesis Testing ; 6a.2 - Steps for Hypothesis Tests; 6a.3 - Set-Up for One-Sample Hypotheses; 6a.4 - Hypothesis Test for One-Sample Proportion. 6a.4.1 - Making a Decision; 6a.4.2 - More on the P-Value and Rejection Region Approach

  4. 5.5

    5.5 - Hypothesis Testing for Two-Sample Proportions. We are now going to develop the hypothesis test for the difference of two proportions for independent samples. The hypothesis test follows the same steps as one group. These notes are going to go into a little bit of math and formulas to help demonstrate the logic behind hypothesis testing ...

  5. Hypothesis Test for a Proportion

    Test statistic. The test statistic is a z-score (z) defined by the following equation. z = (p - P) / σ. where P is the hypothesized value of population proportion in the null hypothesis, p is the sample proportion, and σ is the standard deviation of the sampling distribution. P-value.

  6. 8.8 Hypothesis Tests for a Population Proportion

    The p -value for a hypothesis test on a population proportion is the area in the tail (s) of distribution of the sample proportion. If both n× p ≥ 5 n × p ≥ 5 and n ×(1− p) ≥ 5 n × (1 − p) ≥ 5, use the normal distribution to find the p -value. If at least one of n× p <5 n × p <5 or n×(1 −p) <5 n × (1 − p) <5, use the ...

  7. 8.4: Hypothesis Test for One Proportion

    Step 1: State the hypotheses: The key words in this example, "proportion" and "differs," give the hypotheses: H 0: p = 0.856. H 1: p ≠ 0.856 (claim) Step 2: Compute the test statistic. Before finding the test statistic, find the sample proportion ˆp = 420 500 = 0.84 and q0 = 1 - 0.856 = 0.144.

  8. S.6 Test of Proportion

    The steps to perform a test of proportion using the critical value approval are as follows: State the null hypothesis H0 and the alternative hypothesis HA. Calculate the test statistic: z = p ^ − p 0 p 0 (1 − p 0) n. where p 0 is the null hypothesized proportion i.e., when H 0: p = p 0. Determine the critical region. Make a decision.

  9. 8.2: Hypothesis Testing of Single Proportion

    Either five-step procedure, critical value or p -value approach, can be used. 8.2: Hypothesis Testing of Single Proportion is shared under a license and was authored, remixed, and/or curated by LibreTexts. Both the critical value approach and the p-value approach can be applied to test hypotheses about a population proportion.

  10. Hypothesis Testing

    This statistics video tutorial explains how to solve hypothesis testing problems with proportions. It explains how to calculate the sample proportion and th...

  11. Statistics

    4. Calculating the Test Statistic. The test statistic is used to decide the outcome of the hypothesis test. The test statistic is a standardized value calculated from the sample. The formula for the test statistic (TS) of a population proportion is: p ^ − p p (1 − p) ⋅ n.

  12. 12.7: The Summary of Hypothesis Testing for Two Parameters

    Use the \(Z\) procedure for testing claims about 2 proportions. For testing claims about two means, we first need to check whether the samples are paired or independent: If they are paired, then we use One Mean \(T\) Procedure. If they are independent, then we check whether the population standard deviations are known:

  13. Hypothesis Test: Difference in Proportions

    Note that these hypotheses constitute a two-tailed test. The null hypothesis will be rejected if the proportion from population 1 is too big or if it is too small. Formulate an analysis plan. For this analysis, the significance level is 0.05. The test method is a two-proportion z-test. Analyze sample data. Using sample data, we calculate the ...

  14. 3.4: Hypothesis Test for a Population Proportion

    Step 3) Compute the test statistic. The test statistic is the number of standard deviations the sample mean is from the known mean. It is also a Z-score, just like the critical value. z = ˆp − p √p(1 − p) n. For this problem, the test statistic is. z = 0.713 − 0.75 √0.75(1 − 0.75) 450 = − 1.81.

  15. 9.4

    9.4 - Comparing Two Proportions. So far, all of our examples involved testing whether a single population proportion p equals some value p 0. Now, let's turn our attention for a bit towards testing whether one population proportion p 1 equals a second population proportion p 2. Additionally, most of our examples thus far have involved left ...

  16. Hypothesis Testing Basics & One Sample Tests for Proportions

    Hypothesis testing is a decision-making process by which we analyze a sample in an attempt to distinguish between results that can easily occur and results that are unlikely. One begins with a claim or statement -- the reason for the study. For example, the claim might be "This coin in my pocket is fair." Then we design a study to test the ...

  17. Hypothesis Test for Proportion (Small Sample)

    The first step is to state the null hypothesis and an alternative hypothesis. Null hypothesis: P >= 0.80. Alternative hypothesis: P < 0.80. Note that these hypotheses constitute a one-tailed test. The null hypothesis will be rejected only if the sample proportion is too small. Determine sampling distribution.

  18. How to Perform Hypothesis Testing for a Proportion: 8 Steps

    Convert the test statistic to a p value. p value is the probability that a randomly selected sample of n would have a sample statistic at least as different as the one obtained. p value is the tail area under the normal curve in the direction of the alternative hypothesis. For example, if a right-tailed test is used, p value is the right-tailed area, or area to the right of the z value.

  19. Lesson 6a: Hypothesis Testing for One-Sample Proportion

    Steps 1-3. Let's apply the general steps for hypothesis testing to the specific case of testing a one-sample proportion. Step 1: Set up the hypotheses and check conditions. Step 2: Decide on the level of significance \ (\boldsymbol { (\alpha)}\).

  20. 10.4: Comparing Two Independent Population Proportions

    A hypothesis test can help determine if a difference in the estimated proportions reflects a difference in the population proportions. The difference of two proportions follows an approximate normal distribution. Generally, the null hypothesis states that the two proportions are the same. That is, \(H_{0}: p_{A} = p_{B}\).

  21. Lesson 6a: Hypothesis Testing for One-Sample Proportion

    Objectives. Upon successful completion of this lesson, you should be able to: Explain the concepts of hypothesis testing. Set up hypotheses. Perform hypothesis testing for a population proportion using the p-value approach and the rejection region approach. Use a confidence interval to draw a conclusion about a two-sided test.

  22. Khan Academy

    Lesson 9: Testing for the difference of two population proportions. Hypothesis test for difference in proportions. Constructing hypotheses for two proportions. Writing hypotheses for testing the difference of proportions. Hypothesis test for difference in proportions example. Test statistic in a two-sample z test for the difference of proportions.

  23. 8.15: Hypothesis Test for a Population Proportion (3 of 3)

    Step 2: Collect the data. Since the hypothesis test is based on probability, random selection or assignment is essential in data production. Additionally, we need to check whether the sample proportion can be np ≥ 10 and n (1 − p) ≥ 10. Step 3: Assess the evidence. Determine the test statistic which is the z -score for the sample proportion.

  24. 6a.2

    In testing a hypothesis, we use a method where we gather data in an effort to gather evidence about the hypothesis. ... Hypothesis Test for One-Sample Proportion. 6a.4.1 - Making a Decision; 6a.4.2 - More on the P-Value and Rejection Region Approach; 6a.4.3 - Steps in Conducting a Hypothesis Test for \(p\)

  25. 8.3: Sampling distribution and hypothesis testing

    Introduction. Understanding the relationship between sampling distributions, probability distributions, and hypothesis testing is the crucial concept in the NHST — Null Hypothesis Significance Testing — approach to inferential statistics. is crucial, and many introductory text books are excellent here. I will add some here to their discussion, perhaps with a different approach, but the ...