hypothesis for marketing research

How to write a hypothesis for marketing experimentation

  • Apr 11, 2021
  • 5 minute read
  • Creating your strongest marketing hypothesis

The potential for your marketing improvement depends on the strength of your testing hypotheses.

But where are you getting your test ideas from? Have you been scouring competitor sites, or perhaps pulling from previous designs on your site? The web is full of ideas and you’re full of ideas – there is no shortage of inspiration, that’s for sure.

Coming up with something you  want  to test isn’t hard to do. Coming up with something you  should  test can be hard to do.

Hard – yes. Impossible? No. Which is good news, because if you can’t create hypotheses for things that should be tested, your test results won’t mean mean much, and you probably shouldn’t be spending your time testing.

Taking the time to write your hypotheses correctly will help you structure your ideas, get better results, and avoid wasting traffic on poor test designs.

With this post, we’re getting advanced with marketing hypotheses, showing you how to write and structure your hypotheses to gain both business results and marketing insights!

By the time you finish reading, you’ll be able to:

  • Distinguish a solid hypothesis from a time-waster, and
  • Structure your solid hypothesis to get results  and  insights

To make this whole experience a bit more tangible, let’s track a sample idea from…well…idea to hypothesis.

Let’s say you identified a call-to-action (CTA)* while browsing the web, and you were inspired to test something similar on your own lead generation landing page. You think it might work for your users! Your idea is:

“My page needs a new CTA.”

*A call-to-action is the point where you, as a marketer, ask your prospect to do something on your page. It often includes a button or link to an action like “Buy”, “Sign up”, or “Request a quote”.

The basics: The correct marketing hypothesis format

Level up: moving from a good to great hypothesis, it’s based on a science, building marketing hypotheses to create insights, what makes a great hypothesis.

A well-structured hypothesis provides insights whether it is proved, disproved, or results are inconclusive.

You should never phrase a marketing hypothesis as a question. It should be written as a statement that can be rejected or confirmed.

Further, it should be a statement geared toward revealing insights – with this in mind, it helps to imagine each statement followed by a  reason :

  • Changing _______ into ______ will increase [conversion goal], because:
  • Changing _______ into ______ will decrease [conversion goal], because:
  • Changing _______ into ______ will not affect [conversion goal], because:

Each of the above sentences ends with ‘because’ to set the expectation that there will be an explanation behind the results of whatever you’re testing.

It’s important to remember to plan ahead when you create a test, and think about explaining why the test turned out the way it did when the results come in.

Understanding what makes an idea worth testing is necessary for your optimization team.

If your tests are based on random ideas you googled or were suggested by a consultant, your testing process still has its training wheels on. Great hypotheses aren’t random. They’re based on rationale and aim for learning.

Hypotheses should be based on themes and analysis that show potential conversion barriers.

At Conversion, we call this investigation phase the “Explore Phase” where we use frameworks like the LIFT Model to understand the prospect’s unique perspective. (You can read more on the the full optimization process here).

A well-founded marketing hypothesis should also provide you with new, testable clues about your users regardless of whether or not the test wins, loses or yields inconclusive results.

These new insights should inform future testing: a solid hypothesis can help you quickly separate worthwhile ideas from the rest when planning follow-up tests.

“Ultimately, what matters most is that you have a hypothesis going into each experiment and you design each experiment to address that hypothesis.” – Nick So, VP of Delivery

Here’s a quick tip :

If you’re about to run a test that isn’t going to tell you anything new about your users and their motivations, it’s probably not worth investing your time in.

Let’s take this opportunity to refer back to your original idea:

Ok, but  what now ? To get actionable insights from ‘a new CTA’, you need to know why it behaved the way it did. You need to ask the right question.

To test the waters, maybe you changed the copy of the CTA button on your lead generation form from “Submit” to “Send demo request”. If this change leads to an increase in conversions, it could mean that your users require more clarity about what their information is being used for.

That’s a potential insight.

Based on this insight, you could follow up with another test that adds copy around the CTA about next steps: what the user should anticipate after they have submitted their information.

For example, will they be speaking to a specialist via email? Will something be waiting for them the next time they visit your site? You can test providing more information, and see if your users are interested in knowing it!

That’s the cool thing about a good hypothesis: the results of the test, while important (of course) aren’t the only component driving your future test ideas. The insights gleaned lead to further hypotheses and insights in a virtuous cycle.

The term “hypothesis” probably isn’t foreign to you. In fact, it may bring up memories of grade-school science class; it’s a critical part of the  scientific method .

The scientific method in testing follows a systematic routine that sets ideation up to predict the results of experiments via:

  • Collecting data and information through observation
  • Creating tentative descriptions of what is being observed
  • Forming  hypotheses  that predict different outcomes based on these observations
  • Testing your  hypotheses
  • Analyzing the data, drawing conclusions and insights from the results

Don’t worry! Hypothesizing may seem ‘sciency’, but it doesn’t have to be complicated in practice.

Hypothesizing simply helps ensure the results from your tests are quantifiable, and is necessary if you want to understand how the results reflect the change made in your test.

A strong marketing hypothesis allows testers to use a structured approach in order to discover what works, why it works, how it works, where it works, and who it works on.

“My page needs a new CTA.” Is this idea in its current state clear enough to help you understand what works? Maybe. Why it works? No. Where it works? Maybe. Who it works on? No.

Your idea needs refining.

Let’s pull back and take a broader look at the lead generation landing page we want to test.

Imagine the situation: you’ve been diligent in your data collection and you notice several recurrences of Clarity pain points – meaning that there are many unclear instances throughout the page’s messaging.

Rather than focusing on the CTA right off the bat, it may be more beneficial to deal with the bigger clarity issue.

Now you’re starting to think about solving your prospects conversion barriers rather than just testing random ideas!

If you believe the overall page is unclear, your overarching theme of inquiry might be positioned as:

  • “Improving the clarity of the page will reduce confusion and improve [conversion goal].”

By testing a hypothesis that supports this clarity theme, you can gain confidence in the validity of it as an actionable marketing insight over time.

If the test results are negative : It may not be worth investigating this motivational barrier any further on this page. In this case, you could return to the data and look at the other motivational barriers that might be affecting user behavior.

If the test results are positive : You might want to continue to refine the clarity of the page’s message with further testing.

Typically, a test will start with a broad idea — you identify the changes to make, predict how those changes will impact your conversion goal, and write it out as a broad theme as shown above. Then, repeated tests aimed at that theme will confirm or undermine the strength of the underlying insight.

You believe you’ve identified an overall problem on your landing page (there’s a problem with clarity). Now you want to understand how individual elements contribute to the problem, and the effect these individual elements have on your users.

It’s game time  – now you can start designing a hypothesis that will generate insights.

You believe your users need more clarity. You’re ready to dig deeper to find out if that’s true!

If a specific question needs answering, you should structure your test to make a single change. This isolation might ask: “What element are users most sensitive to when it comes to the lack of clarity?” and “What changes do I believe will support increasing clarity?”

At this point, you’ll want to boil down your overarching theme…

  • Improving the clarity of the page will reduce confusion and improve [conversion goal].

…into a quantifiable hypothesis that isolates key sections:

  • Changing the wording of this CTA to set expectations for users (from “submit” to “send demo request”) will reduce confusion about the next steps in the funnel and improve order completions.

Does this answer what works? Yes: changing the wording on your CTA.

Does this answer why it works? Yes: reducing confusion about the next steps in the funnel.

Does this answer where it works? Yes: on this page, before the user enters this theoretical funnel.

Does this answer who it works on? No, this question demands another isolation. You might structure your hypothesis more like this:

  • Changing the wording of the CTA to set expectations for users (from “submit” to “send demo request”) will reduce confusion  for visitors coming from my email campaign  about the next steps in the funnel and improve order completions.

Now we’ve got a clear hypothesis. And one worth testing!

1. It’s testable.

2. It addresses conversion barriers.

3. It aims at gaining marketing insights.

Let’s compare:

The original idea : “My page needs a new CTA.”

Following the hypothesis structure : “A new CTA on my page will increase [conversion goal]”

The first test implied a problem with clarity, provides a potential theme : “Improving the clarity of the page will reduce confusion and improve [conversion goal].”

The potential clarity theme leads to a new hypothesis : “Changing the wording of the CTA to set expectations for users (from “submit” to “send demo request”) will reduce confusion about the next steps in the funnel and improve order completions.”

Final refined hypothesis : “Changing the wording of the CTA to set expectations for users (from “submit” to “send demo request”) will reduce confusion for visitors coming from my email campaign about the next steps in the funnel and improve order completions.”

Which test would you rather your team invest in?

Before you start your next test, take the time to do a proper analysis of the page you want to focus on. Do preliminary testing to define bigger issues, and use that information to refine and pinpoint your marketing hypothesis to give you forward-looking insights.

Doing this will help you avoid time-wasting tests, and enable you to start getting some insights for your team to keep testing!

Share this post

Other articles you might like

hypothesis for marketing research

Mixed Methods Experimentation

hypothesis for marketing research

The Conversion Methodology: an internal training case study

hypothesis for marketing research

Why CRO should (probably) be a priority

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

hypothesis for marketing research

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

hypothesis for marketing research

Expert Advice on Developing a Hypothesis for Marketing Experimentation 

  • Conversion Rate Optimization

Simbar Dube

Simbar Dube

Every marketing experimentation process has to have a solid hypothesis. 

That’s a must – unless you want to be roaming in the dark and heading towards a dead-end in your experimentation program.

Hypothesizing is the second phase of our SHIP optimization process here at Invesp.

hypothesis for marketing research

It comes after we have completed the research phase. 

This is an indication that we don’t just pull a hypothesis out of thin air. We always make sure that it is based on research data. 

But having a research-backed hypothesis doesn’t mean that the hypothesis will always be correct. In fact, tons of hypotheses bear inconclusive results or get disproved. 

The main idea of having a hypothesis in marketing experimentation is to help you gain insights – regardless of the testing outcome. 

By the time you finish reading this article, you’ll know: 

  • The essential tips on what to do when crafting a hypothesis for marketing experiments
  • How a marketing experiment hypothesis works 

How experts develop a solid hypothesis

The basics: marketing experimentation hypothesis.

A hypothesis is a research-based statement that aims to explain an observed trend and create a solution that will improve the result. This statement is an educated, testable prediction about what will happen.

It has to be stated in declarative form and not as a question.

“ If we add magnification info, product video and making virtual mirror buttons, will that improve engagement? ” is not declarative, but “ Improving the experience of product pages by adding magnification info, product video and making virtual mirror buttons will increase engagement ” is.

Here’s a quick example of how a hypothesis should be phrased: 

  • Replacing ___ with __ will increase [conversion goal] by [%], because:
  • Removing ___ and __ will decrease [conversion goal] by [%], because:
  • Changing ___ into __ will not affect [conversion goal], because:
  • Improving  ___ by  ___will increase [conversion goal], because: 

As you can see from the above sentences, a good hypothesis is written in clear and simple language. Reading your hypothesis should tell your team members exactly what you thought was going to happen in an experiment.

Another important element of a good hypothesis is that it defines the variables in easy-to-measure terms, like who the participants are, what changes during the testing, and what the effect of the changes will be: 

Example : Let’s say this is our hypothesis: 

Displaying full look items on every “continue shopping & view your bag” pop-up and highlighting the value of having a full look will improve the visibility of a full look, encourage visitors to add multiple items from the same look and that will increase the average order value, quantity with cross-selling by 3% .

Who are the participants : 

Visitors. 

What changes during the testing : 

Displaying full look items on every “continue shopping & view your bag” pop-up and highlighting the value of having a full look…

What the effect of the changes will be:  

Will improve the visibility of a full look, encourage visitors to add multiple items from the same look and that will increase the average order value, quantity with cross-selling by 3% .

Don’t bite off more than you can chew! Answering some scientific questions can involve more than one experiment, each with its own hypothesis. so, you have to make sure your hypothesis is a specific statement relating to a single experiment.

How a Marketing Experimentation Hypothesis Works

Assuming that you have done conversion research and you have identified a list of issues ( UX or conversion-related problems) and potential revenue opportunities on the site. The next thing you’d want to do is to prioritize the issues and determine which issues will most impact the bottom line.

Having ranked the issues you need to test them to determine which solution works best. At this point, you don’t have a clear solution for the problems identified. So, to get better results and avoid wasting traffic on poor test designs, you need to make sure that your testing plan is guided. 

This is where a hypothesis comes into play. 

For each and every problem you’re aiming to address, you need to craft a hypothesis for it – unless the problem is a technical issue that can be solved right away without the need to hypothesize or test. 

One important thing you should note about an experimentation hypothesis is that it can be implemented in different ways.  

hypothesis for marketing research

This means that one hypothesis can have four or five different tests as illustrated in the image above. Khalid Saleh , the Invesp CEO, explains: 

“There are several ways that can be used to support one single hypothesis. Each and every way is a possible test scenario. And that means you also have to prioritize the test design you want to start with. Ultimately the name of the game is you want to find the idea that has the biggest possible impact on the bottom line with the least amount of effort. We use almost 18 different metrics to score all of those.”

In one of the recent tests we launched after watching video recordings, viewing heatmaps, and conducting expert reviews, we noticed that:  

  • Visitors were scrolling to the bottom of the page to fill out a calculator so as to get a free diet plan. 
  • Brand is missing 
  • Too many free diet plans – and this made it hard for visitors to choose and understand.  
  • No value proposition on the page
  • The copy didn’t mention the benefits of the paid program
  • There was no clear CTA for the next action

To help you understand, let’s have a look at how the original page looked like before we worked on it: 

hypothesis for marketing research

So our aim was to make the shopping experience seamless for visitors, make the page more appealing and not confusing. In order to do that, here is how we phrased the hypothesis for the page above: 

Improving the experience of optin landing pages by making the free offer accessible above the fold and highlighting the next action with a clear CTA and will increase the engagement on the offer and increase the conversion rate by 1%.

For this particular hypothesis, we had two design variations aligned to it:

hypothesis for marketing research

The two above designs are different, but they are aligned to one hypothesis. This goes on to show how one hypothesis can be implemented in different ways. Looking at the two variations above – which one do you think won?

Yes, you’re right, V2 was the winner. 

Considering that there are many ways you can implement one hypothesis, so when you launch a test and it fails, it doesn’t necessarily mean that the hypothesis was wrong. Khalid adds:

“A single failure of a test doesn’t mean that the hypothesis is incorrect. Nine times out of ten it’s because of the way you’ve implemented the hypothesis. Look at the way you’ve coded and look at the copy you’ve used – you are more likely going to find something wrong with it. Always be open.” 

So there are three things you should keep in mind when it comes to marketing experimentation hypotheses: 

  • It takes a while for this hypothesis to really fully test it.
  • A single failure doesn’t necessarily mean that the hypothesis is incorrect.
  • Whether a hypothesis is proved or disproved, you can still learn something about your users.

I know it’s never easy to develop a hypothesis that informs future testing – I mean it takes a lot of intense research behind the scenes, and tons of ideas to begin with. So, I reached out to six CRO experts for tips and advice to help you understand more about developing a solid hypothesis and what to include in it. 

Maurice   says that a solid hypothesis should have not more than one goal: 

Maurice Beerthuyzen – CRO/CXO Lead at ClickValue “Creating a hypothesis doesn’t begin at the hypothesis itself. It starts with research. What do you notice in your data, customer surveys, and other sources? Do you understand what happens on your website? When you notice an opportunity it is tempting to base one single A/B test on one hypothesis. Create hypothesis A and run a single test, and then move forward to the next test. With another hypothesis. But it is very rare that you solve your problem with only one hypothesis. Often a test provides several other questions. Questions which you can solve with running other tests. But based on that same hypothesis! We should not come up with a new hypothesis for every test. Another mistake that often happens is that we fill the hypothesis with multiple goals. Then we expect that the hypothesis will work on conversion rate, average order value, and/or Click Through Ratio. Of course, this is possible, but when you run your test, your hypothesis can only have one goal at once. And what if you have two goals? Just split the hypothesis then create a secondary hypothesis for your second goal. Every test has one primary goal. What if you find a winner on your secondary hypothesis? Rerun the test with the second hypothesis as the primary one.”

Jon believes that a strong hypothesis is built upon three pillars:

Jon MacDonald – President and Founder of The Good Respond to an established challenge – The challenge must have a strong background based on data, and the background should state an established challenge that the test is looking to address. Example: “Sign up form lacks proof of value, incorrectly assuming if users are on the page, they already want the product.” Propose a specific solution – What is the one, the single thing that is believed will address the stated challenge? Example: “Adding an image of the dashboard as a background to the signup form…”. State the assumed impact – The assumed impact should reference one specific, measurable optimization goal that was established prior to forming a hypothesis. Example: “…will increase signups.” So, if your hypothesis doesn’t have a specific, measurable goal like “will increase signups,” you’re not really stating a test hypothesis!”

Matt uses his own hypothesis builder to collate important data points into a single hypothesis. 

Matt Beischel – Founder of Corvus CRO Like Jon, Matt also breaks down his hypothesis writing process into three sections. Unlike Jon, Matt sections are: Comprehension Response Outcome I set it up so that the names neatly match the “CRO.” It’s a sort of “mad-libs” style fill-in-the-blank where each input is an important piece of information for building out a robust hypothesis. I consider these the minimum required data points for a good hypothesis; if you can’t completely fill out the form, then you don’t have a good hypothesis. Here’s a breakdown of each data point: Comprehension – Identifying something that can be improved upon Problem: “What is a problem we have?” Observation Method: “How did we identify the problem?” Response – Change that can cause improvement Variation: “What change do we think could solve the problem?” Location: “Where should the change occur?” Scope: “What are the conditions for the change?” Audience: “Who should the change affect?” Outcome – Measurable result of the change that determines the success Behavior Change : “What change in behavior are we trying to affect?” Primary KPI: “What is the important metric that determines business impact?” Secondary KPIs: “Other metrics that will help reinforce/refute the Primary KPI” Something else to consider is that I have a “user first” approach to formulating hypotheses. My process above is always considered within the context of how it would first benefit the user. Now, I do feel that a successful experiment should satisfy the needs of BOTH users and businesses, but always be in favor of the user. Notice that “Behavior Change” is the first thing listed in Outcome, not primary business KPI. Sure, at the end of the day you are working for the business’s best interests (both strategically and financially), but placing the user first will better inform your decision making and prioritization; there’s a reason that things like personas, user stories, surveys, session replays, reviews, etc. exist after all. A business-first ideology is how you end up with dark patterns and damaging brand credibility.”

One of the many mistakes that CROs make when writing a hypothesis is that they are focused on wins and not on insights. Shiva advises against this mindset:

Shiva Manjunath – Marketing Manager and CRO at Gartner “Test to learn, not test to win. It’s a very simple reframe of hypotheses but can have a magnitude of difference. Here’s an example: Test to Win Hypothesis: If I put a product video in the middle of the product page, I will improve add to cart rates and improve CVR. Test to Learn Hypothesis: If I put a product video on the product page, there will be high engagement with the video and it will positively influence traffic What you’re doing is framing your hypothesis, and test, in a particular way to learn as much as you can. That is where you gain marketing insights. The more you run ‘marketing insight’ tests, the more you will win. Why? The more you compound marketing insight learnings, your win velocity will start to increase as a proxy of the learnings you’ve achieved. Then, you’ll have a higher chance of winning in your tests – and the more you’ll be able to drive business results.”

Lorenzo  says it’s okay to focus on achieving a certain result as long as you are also getting an answer to: “Why is this event happening or not happening?”

Lorenzo Carreri – CRO Consultant “When I come up with a hypothesis for a new or iterative experiment, I always try to find an answer to a question. It could be something related to a problem people have or an opportunity to achieve a result or a way to learn something. The main question I want to answer is “Why is this event happening or not happening?” The question is driven by data, both qualitative and quantitative. The structure I use for stating my hypothesis is: From [data source], I noticed [this problem/opportunity] among [this audience of users] on [this page or multiple pages]. So I believe that by [offering this experiment solution], [this KPI] will [increase/decrease/stay the same].

Jakub Linowski says that hypotheses are meant to hold researchers accountable:

Jakub Linowski – Chief Editor of GoodUI “They do this by making your change and prediction more explicit. A typical hypothesis may be expressed as: If we change (X), then it will have some measurable effect (A). Unfortunately, this oversimplified format can also become a heavy burden to your experiment design with its extreme reductionism. However you decide to format your hypotheses, here are three suggestions for more flexibility to avoid limiting yourself. One Or More Changes To break out of the first limitation, we have to admit that our experiments may contain a single or multiple changes. Whereas the classic hypothesis encourages a single change or isolated variable, it’s not the only way we can run experiments. In the real world, it’s quite normal to see multiple design changes inside a single variation. One valid reason for doing this is when wishing to optimize a section of a website while aiming for a greater effect. As more positive changes compound together, there are times when teams decide to run bigger experiments. An experiment design (along with your hypotheses) therefore should allow for both single or multiple changes. One Or More Metrics A second limitation of many hypotheses is that they often ask us to only make a single prediction at a time. There are times when we might like to make multiple guesses or predictions to a set of metrics. A simple example of this might be a trade-off experiment with a guess of increased sales but decreased trial signups. Being able to express single or multiple metrics in our experimental designs should therefore be possible. Estimates, Directional Predictions, Or Unknowns Finally, traditional hypotheses also tend to force very simple directional predictions by asking us to guess whether something will increase or decrease. In reality, however, the fidelity of predictions can be higher or lower. On one hand, I’ve seen and made experiment estimations that contain specific numbers from prior data (ex: increase sales by 14%). While at other times it should also be acceptable to admit the unknown and leave the prediction blank. One example of this is when we are testing a completely novel idea without any prior data in a highly exploratory type of experiment. In such cases, it might be dishonest to make any sort of predictions and we should allow ourselves to express the unknown comfortably.”

Conclusion 

So there you have it! Before you jump on launching a test, start by making sure that your hypothesis is solid and backed by research. Ask yourself the questions below when crafting a hypothesis for marketing experimentation:

  • Is the hypothesis backed by research?
  • Can the hypothesis be tested?
  • Does the hypothesis provide insights?
  • Does the hypothesis set the expectation that there will be an explanation behind the results of whatever you’re testing?

Don’t worry! Hypothesizing may seem like a very complicated process, but it’s not complicated in practice especially when you have done proper research.

If you enjoyed reading this article and you’d love to get the best CRO content – delivered by the best experts in the industry – straight to your inbox, every week. Please subscribe here .

Share This Article

Join 25,000+ marketing professionals.

Subscribe to Invesp’s blog feed for future articles delivered to receive weekly updates by email.

Simbar Dube

Discover Similar Topics

e-commerce Category Pages

How to Create Effective E-commerce Category Pages

ecommerce conversion rate optimization

The Science Behind Successful Ecommerce Conversion Rate Optimization

hypothesis for marketing research

Our Services

  • Conversion Optimization Training
  • Conversion Rate Optimization Professional Services
  • Landing Page Optimization
  • Conversion Rate Audit
  • Design for Growth
  • Conversion Research & Discovery
  • End to End Digital Optimization

By Industry

  • E-commerce CRO Services
  • Lead Generation CRO Services
  • SaaS CRO Services
  • Startup CRO Program
  • Case Studies
  • Privacy Policy
  • © 2006-2020 All rights reserved. Invesp

Subscribe with us

  • US office: Chicago, IL
  • European office: Istanbul, Turkey
  • +1.248.270.3325
  • [email protected]
  • Conversion Rate Optimization Services
  • © 2006-2023 All rights reserved. Invesp
  • Popular Topics
  • A/B Testing
  • Business & Growth
  • Copywriting
  • Infographics
  • Landing Pages
  • Sales & Marketing

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO

hypothesis for marketing research

9 Key stages in your marketing research process

You can conduct your own marketing research. Follow these steps, add your own flair, knowledge and creativity, and you’ll have bespoke research to be proud of.

Marketing research is the term used to cover the concept, development, placement and evolution of your product or service, its growing customer base and its branding – starting with brand awareness , and progressing to (everyone hopes) brand equity . Like any research, it needs a robust process to be credible and useful.

Marketing research uses four essential key factors known as the ‘marketing mix’ , or the Four Ps of Marketing :

  • Product (goods or service)
  • Price ( how much the customer pays )
  • Place (where the product is marketed)
  • Promotion (such as advertising and PR)

These four factors need to work in harmony for a product or service to be successful in its marketplace.

The marketing research process – an overview

A typical marketing research process is as follows:

  • Identify an issue, discuss alternatives and set out research objectives
  • Develop a research program
  • Choose a sample
  • Gather information
  • Gather data
  • Organize and analyze information and data
  • Present findings
  • Make research-based decisions
  • Take action based on insights

Step 1: Defining the marketing research problem

Defining a problem is the first step in the research process. In many ways, research starts with a problem facing management. This problem needs to be understood, the cause diagnosed, and solutions developed.

However, most management problems are not always easy to research, so they must first be translated into research problems. Once you approach the problem from a research angle, you can find a solution. For example, “sales are not growing” is a management problem, but translated into a research problem, it becomes “ why are sales not growing?” We can look at the expectations and experiences of several groups : potential customers, first-time buyers, and repeat purchasers. We can question whether the lack of sales is due to:

  • Poor expectations that lead to a general lack of desire to buy, or
  • Poor performance experience and a lack of desire to repurchase.

This, then, is the difference between a management problem and a research problem. Solving management problems focuses on actions: Do we advertise more? Do we change our advertising message? Do we change an under-performing product configuration? And if so, how?

Defining research problems, on the other hand, focus on the whys and hows, providing the insights you need to solve your management problem.

Step 2: Developing a research program: method of inquiry

The scientific method is the standard for investigation. It provides an opportunity for you to use existing knowledge as a starting point, and proceed impartially.

The scientific method includes the following steps:

  • Define a problem
  • Develop a hypothesis
  • Make predictions based on the hypothesis
  • Devise a test of the hypothesis
  • Conduct the test
  • Analyze the results

This terminology is similar to the stages in the research process. However, there are subtle differences in the way the steps are performed:

  • the scientific research method is objective and fact-based, using quantitative research and impartial analysis
  • the marketing research process can be subjective, using opinion and qualitative research, as well as personal judgment as you collect and analyze data

Step 3: Developing a research program: research method

As well as selecting a method of inquiry (objective or subjective), you must select a research method . There are two primary methodologies that can be used to answer any research question:

  • Experimental research : gives you the advantage of controlling extraneous variables and manipulating one or more variables that influence the process being implemented.
  • Non-experimental research : allows observation but not intervention – all you do is observe and report on your findings.

Step 4: Developing a research program: research design

Research design is a plan or framework for conducting marketing research and collecting data. It is defined as the specific methods and procedures you use to get the information you need.

There are three core types of marketing research designs: exploratory, descriptive, and causal . A thorough marketing research process incorporates elements of all of them.

Exploratory marketing research

This is a starting point for research. It’s used to reveal facts and opinions about a particular topic, and gain insight into the main points of an issue. Exploratory research is too much of a blunt instrument to base conclusive business decisions on, but it gives the foundation for more targeted study. You can use secondary research materials such as trade publications, books, journals and magazines and primary research using qualitative metrics, that can include open text surveys, interviews and focus groups.

Descriptive marketing research

This helps define the business problem or issue so that companies can make decisions, take action and monitor progress. Descriptive research is naturally quantitative – it needs to be measured and analyzed statistically , using more targeted surveys and questionnaires. You can use it to capture demographic information , evaluate a product or service for market, and monitor a target audience’s opinion and behaviors. Insights from descriptive research can inform conclusions about the market landscape and the product’s place in it.

Causal marketing research

This is useful to explore the cause and effect relationship between two or more variables. Like descriptive research , it uses quantitative methods, but it doesn’t merely report findings; it uses experiments to predict and test theories about a product or market. For example, researchers may change product packaging design or material, and measure what happens to sales as a result.

Step 5: Choose your sample

Your marketing research project will rarely examine an entire population. It’s more practical to use a sample - a smaller but accurate representation of the greater population. To design your sample, you’ll need to answer these questions:

  • Which base population is the sample to be selected from? Once you’ve established who your relevant population is (your research design process will have revealed this), you have a base for your sample. This will allow you to make inferences about a larger population.
  • What is the method (process) for sample selection? There are two methods of selecting a sample from a population:

1. Probability sampling : This relies on a random sampling of everyone within the larger population.

2. Non-probability sampling : This is based in part on the investigator’s judgment, and often uses convenience samples, or by other sampling methods that do not rely on probability.

  • What is your sample size? This important step involves cost and accuracy decisions. Larger samples generally reduce sampling error and increase accuracy, but also increase costs. Find out your perfect sample size with our calculator .

Step 6: Gather data

Your research design will develop as you select techniques to use. There are many channels for collecting data, and it’s helpful to differentiate it into O-data (Operational) and X-data (Experience):

  • O-data is your business’s hard numbers like costs, accounting, and sales. It tells you what has happened, but not why.
  • X-data gives you insights into the thoughts and emotions of the people involved: employees, customers, brand advocates.

When you combine O-data with X-data, you’ll be able to build a more complete picture about success and failure - you’ll know why. Maybe you’ve seen a drop in sales (O-data) for a particular product. Maybe customer service was lacking, the product was out of stock, or advertisements weren’t impactful or different enough: X-data will reveal the reason why those sales dropped. So, while differentiating these two data sets is important, when they are combined, and work with each other, the insights become powerful.

With mobile technology, it has become easier than ever to collect data. Survey research has come a long way since market researchers conducted face-to-face, postal, or telephone surveys. You can run research through:

  • Social media ( polls and listening )

Another way to collect data is by observation. Observing a customer’s or company’s past or present behavior can predict future purchasing decisions. Data collection techniques for predicting past behavior can include market segmentation , customer journey mapping and brand tracking .

Regardless of how you collect data, the process introduces another essential element to your research project: the importance of clear and constant communication .

And of course, to analyze information from survey or observation techniques, you must record your results . Gone are the days of spreadsheets. Feedback from surveys and listening channels can automatically feed into AI-powered analytics engines and produce results, in real-time, on dashboards.

Step 7: Analysis and interpretation

The words ‘ statistical analysis methods ’ aren’t usually guaranteed to set a room alight with excitement, but when you understand what they can do, the problems they can solve and the insights they can uncover, they seem a whole lot more compelling.

Statistical tests and data processing tools can reveal:

  • Whether data trends you see are meaningful or are just chance results
  • Your results in the context of other information you have
  • Whether one thing affecting your business is more significant than others
  • What your next research area should be
  • Insights that lead to meaningful changes

There are several types of statistical analysis tools used for surveys. You should make sure that the ones you choose:

  • Work on any platform - mobile, desktop, tablet etc.
  • Integrate with your existing systems
  • Are easy to use with user-friendly interfaces, straightforward menus, and automated data analysis
  • Incorporate statistical analysis so you don’t just process and present your data, but refine it, and generate insights and predictions.

Here are some of the most common tools:

  • Benchmarking : a way of taking outside factors into account so that you can adjust the parameters of your research. It ‘levels the playing field’ – so that your data and results are more meaningful in context. And gives you a more precise understanding of what’s happening.
  • Regression analysis : this is used for working out the relationship between two (or more) variables. It is useful for identifying the precise impact of a change in an independent variable.
  • T-test is used for comparing two data groups which have different mean values. For example, do women and men have different mean heights?
  • Analysis of variance (ANOVA) Similar to the T-test, ANOVA is a way of testing the differences between three or more independent groups to see if they’re statistically significant.
  • Cluster analysis : This organizes items into groups, or clusters, based on how closely associated they are.
  • Factor analysis: This is a way of condensing many variables into just a few, so that your research data is less unwieldy to work with.
  • Conjoint analysis : this will help you understand and predict why people make the choices they do. It asks people to make trade-offs when making decisions, just as they do in the real world, then analyzes the results to give the most popular outcome.
  • Crosstab analysis : this is a quantitative market research tool used to analyze ‘categorical data’ - variables that are different and mutually exclusive, such as: ‘men’ and ‘women’, or ‘under 30’ and ‘over 30’.
  • Text analysis and sentiment analysis : Analyzing human language and emotions is a rapidly-developing form of data processing, assigning positive, negative or neutral sentiment to customer messages and feedback.

Stats IQ can perform the most complicated statistical tests at the touch of a button using our online survey software , or data from other sources. Learn more about Stats iQ now .

Step 8: The marketing research results

Your marketing research process culminates in the research results. These should provide all the information the stakeholders and decision-makers need to understand the project.

The results will include:

  • all your information
  • a description of your research process
  • the results
  • conclusions
  • recommended courses of action

They should also be presented in a form, language and graphics that are easy to understand, with a balance between completeness and conciseness, neither leaving important information out or allowing it to get so technical that it overwhelms the readers.

Traditionally, you would prepare two written reports:

  • a technical report , discussing the methods, underlying assumptions and the detailed findings of the research project
  • a summary report , that summarizes the research process and presents the findings and conclusions simply.

There are now more engaging ways to present your findings than the traditional PowerPoint presentations, graphs, and face-to-face reports:

  • Live, interactive dashboards for sharing the most important information, as well as tracking a project in real time.
  • Results-reports visualizations – tables or graphs with data visuals on a shareable slide deck
  • Online presentation technology, such as Prezi
  • Visual storytelling with infographics
  • A single-page executive summary with key insights
  • A single-page stat sheet with the top-line stats

You can also make these results shareable so that decision-makers have all the information at their fingertips.

Step 9 Turn your insights into action

Insights are one thing, but they’re worth very little unless they inform immediate, positive action. Here are a few examples of how you can do this:

  • Stop customers leaving – negative sentiment among VIP customers gets picked up; the customer service team contacts the customers, resolves their issues, and avoids churn .
  • Act on important employee concerns – you can set certain topics, such as safety, or diversity and inclusion to trigger an automated notification or Slack message to HR. They can rapidly act to rectify the issue.
  • Address product issues – maybe deliveries are late, maybe too many products are faulty. When product feedback gets picked up through Smart Conversations, messages can be triggered to the delivery or product teams to jump on the problems immediately.
  • Improve your marketing effectiveness - Understand how your marketing is being received by potential customers, so you can find ways to better meet their needs
  • Grow your brand - Understand exactly what consumers are looking for, so you can make sure that you’re meeting their expectations

Free eBook: Quantitative and qualitative research design

Scott Smith

Scott Smith, Ph.D. is a contributor to the Qualtrics blog.

Related Articles

May 20, 2024

Best strategy & research books to read in 2024

May 13, 2024

Experience Management

X4 2024 Strategy & Research Showcase: Introducing the future of insights generation

November 7, 2023

Brand Experience

The 4 market research trends redefining insights in 2024

June 27, 2023

The fresh insights people: Scaling research at Woolworths Group

June 20, 2023

Bank less, delight more: How Bankwest built an engine room for customer obsession

April 1, 2023

Academic Experience

How to write great survey questions (with examples)

March 21, 2023

Sample size calculator

November 18, 2022

Statistical analysis software: your complete guide to getting started

Stay up to date with the latest xm thought leadership, tips and news., request demo.

Ready to learn more about Qualtrics?

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

hypothesis for marketing research

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved September 23, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, what is your plagiarism score.

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Data collection

Data Collection – Methods Types and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Data Interpretation

Data Interpretation – Process, Methods and...

Research Project

Research Project – Definition, Writing Guide and...

Data Analysis

Data Analysis – Process, Methods and Types

hypothesis for marketing research

From Hypothesis to Results: Mastering the Art of Marketing Experiments

image

Max 16 min read

From Hypothesis to Results: Mastering the Art of Marketing Experiments

Click the button to start reading

Suppose you’re trying to convince your friend to watch your favorite movie. You could either tell them about the intriguing plot or show them the exciting trailer.

To find out which approach works best, you try both methods with different friends and see which one gets more people to watch the movie.

Marketing experiments work in much the same way, allowing businesses to test different marketing strategies, gather feedback from their target audience, and make data-driven decisions that lead to improved outcomes and growth.

By testing different approaches and measuring their outcomes, companies can identify what works best for their unique target audience and adapt their marketing strategies accordingly. This leads to more efficient use of marketing resources and results in higher conversion rates, increased customer satisfaction, and, ultimately, business growth.

Marketing experiments are the backbone of building an organization’s culture of learning and curiosity, encouraging employees to think outside the box and challenge the status quo.

In this article, we will delve into the fundamentals of marketing experiments, discussing their key elements and various types. By the end, you’ll be in a position to start running these tests and securing better marketing campaigns with explosive results.

Why Digital Marketing Experiments Matter

Why Digital Marketing Experiments Matter

One of the most effective ways to drive growth and optimize marketing strategies is through digital marketing experiments. These experiments provide invaluable insights into customer preferences, behaviors, and the overall effectiveness of marketing efforts, making them an essential component of any digital marketing strategy.

Digital marketing experiments matter for several reasons:

  • Customer-centric approach: By conducting experiments, businesses can gain a deeper understanding of their target audience’s preferences and behaviors. This enables them to tailor their marketing efforts to better align with customer needs, resulting in more effective and engaging campaigns.
  • Data-driven decision-making: Marketing experiments provide quantitative data on the performance of different marketing strategies and tactics. This empowers businesses to make informed decisions based on actual results rather than relying on intuition or guesswork. Ultimately, this data-driven approach leads to more efficient allocation of resources and improved marketing outcomes.
  • Agility and adaptability: Businesses must be agile and adaptable to keep up with emerging trends and technologies. Digital marketing experiments allow businesses to test new ideas, platforms, and strategies in a controlled environment, helping them stay ahead of the curve and quickly respond to changing market conditions.
  • Continuous improvement: Digital marketing experiments facilitate an iterative process of testing, learning, and refining marketing strategies. This ongoing cycle of improvement enables businesses to optimize their marketing efforts, drive better results, and maintain a competitive edge in the digital marketplace.
  • ROI and profitability: By identifying which marketing tactics are most effective, businesses can allocate their marketing budget more efficiently and maximize their return on investment. This increased profitability can be reinvested into the business, fueling further growth and success.

Developing a culture of experimentation allows businesses to continuously improve their marketing strategies, maximize their ROI, and avoid being left behind by the competition.

The Fundamentals of Digital Marketing Experiments

The Fundamentals of Digital Marketing Experiments

Marketing experiments are structured tests that compare different marketing strategies, tactics, or assets to determine which one performs better in achieving specific objectives.

These experiments use a scientific approach, which involves formulating hypotheses, controlling variables, gathering data, and analyzing the results to make informed decisions.

Marketing experiments provide valuable insights into customer preferences and behaviors, enabling businesses to optimize their marketing efforts and maximize returns on investment (ROI).

There are several types of marketing experiments that businesses can use, depending on their objectives and available resources.

The most common types include:

A/B testing

A/B testing, also known as split testing, is a simple yet powerful technique that compares two variations of a single variable to determine which one performs better.

In an A/B test, the target audience is randomly divided into two groups: one group is exposed to version A (the control). In contrast, the other group is exposed to version B (the treatment). The performance of both versions is then measured and compared to identify the one that yields better results.

A/B testing can be applied to various marketing elements, such as headlines, calls-to-action, email subject lines, landing page designs, and ad copy. The primary advantage of A/B testing is its simplicity, making it easy for businesses to implement and analyze.

Multivariate testing

Multivariate testing is a more advanced technique that allows businesses to test multiple variables simultaneously.

In a multivariate test, several elements of a marketing asset are modified and combined to create different versions. These versions are then shown to different segments of the target audience, and their performance is measured and compared to determine the most effective combination of variables.

Multivariate testing is beneficial when optimizing complex marketing assets, such as websites or email templates, with multiple elements that may interact with one another. However, this method requires a larger sample size and more advanced analytical tools compared to A/B testing.

Pre-post analysis

Pre-post analysis involves comparing the performance of a marketing strategy before and after implementing a change.

This type of experiment is often used when it is not feasible to conduct an A/B or multivariate test, such as when the change affects the entire customer base or when there are external factors that cannot be controlled.

While pre-post analysis can provide useful insights, it is less reliable than A/B or multivariate testing because it does not account for potential confounding factors. To obtain accurate results from a pre-post analysis, businesses must carefully control for external influences and ensure that the observed changes are indeed due to the implemented modifications.

How To Start Growth Marketing Experiments

How To Start Growth Marketing Experiments

To conduct effective marketing experiments, businesses must pay attention to the following key elements:

Clear objectives

Having clear objectives is crucial for a successful marketing experiment. Before starting an experiment, businesses must identify the specific goals they want to achieve, such as increasing conversions, boosting engagement, or improving click-through rates. Clear objectives help guide the experimental design and ensure the results are relevant and actionable.

Hypothesis-driven approach

A marketing experiment should be based on a well-formulated hypothesis that predicts the expected outcome. A reasonable hypothesis is specific, testable, and grounded in existing knowledge or data. It serves as the foundation for experimental design and helps businesses focus on the most relevant variables and outcomes.

Proper experimental design

A marketing experiment requires a well-designed test that controls for potential confounding factors and ensures the reliability and validity of the results. This includes the random assignment of participants, controlling for external influences, and selecting appropriate variables to test. Proper experimental design increases the likelihood that observed differences are due to the tested variables and not other factors.

Adequate sample size

A successful marketing experiment requires an adequate sample size to ensure the results are statistically significant and generalizable to the broader target audience. The required sample size depends on the type of experiment, the expected effect size, and the desired level of confidence. In general, larger sample sizes provide more reliable and accurate results but may also require more resources to conduct the experiment.

Data-driven analysis

Marketing experiments rely on a data-driven analysis of the results. This involves using statistical techniques to determine whether the observed differences between the tested variations are significant and meaningful. Data-driven analysis helps businesses make informed decisions based on empirical evidence rather than intuition or gut feelings.

By understanding the fundamentals of marketing experiments and following best practices, businesses can gain valuable insights into customer preferences and behaviors, ultimately leading to improved outcomes and growth.

Setting up Your First Marketing Experiment

Setting up Your First Marketing Experiment

Embarking on your first marketing experiment can be both exciting and challenging. Following a systematic approach, you can set yourself up for success and gain valuable insights to improve your marketing efforts.

Here’s a step-by-step guide to help you set up your first marketing experiment.

Identifying your marketing objectives

Before diving into your experiment, it’s essential to establish clear marketing objectives. These objectives will guide your entire experiment, from hypothesis formulation to data analysis.

Consider what you want to achieve with your marketing efforts, such as increasing website conversions, improving open email rates, or boosting social media engagement.

Make sure your objectives are specific, measurable, achievable, relevant, and time-bound (SMART) to ensure that they are actionable and provide meaningful insights.

Formulating a hypothesis

With your marketing objectives in mind, the next step is formulating a hypothesis for your experiment. A hypothesis is a testable prediction that outlines the expected outcome of your experiment. It should be based on existing knowledge, data, or observations and provide a clear direction for your experimental design.

For example, suppose your objective is to increase email open rates. In that case, your hypothesis might be, “Adding the recipient’s first name to the email subject line will increase the open rate by 10%.” This hypothesis is specific, testable, and clearly linked to your marketing objective.

Designing the experiment

Once you have a hypothesis in place, you can move on to designing your experiment. This involves several key decisions:

Choosing the right testing method:

Select the most appropriate testing method for your experiment based on your objectives, hypothesis, and available resources.

As discussed earlier, common testing methods include A/B, multivariate, and pre-post analyses. Choose the method that best aligns with your goals and allows you to effectively test your hypothesis.

Selecting the variables to test:

Identify the specific variables you will test in your experiment. These should be directly related to your hypothesis and marketing objectives. In the email open rate example, the variable to test would be the subject line, specifically the presence or absence of the recipient’s first name.

When selecting variables, consider their potential impact on your marketing objectives and prioritize those with the greatest potential for improvement. Also, ensure that the variables are easily measurable and can be manipulated in your experiment.

Identifying the target audience:

Determine the target audience for your experiment, considering factors such as demographics, interests, and behaviors. Your target audience should be representative of the larger population you aim to reach with your marketing efforts.

When segmenting your audience for the experiment, ensure that the groups are as similar as possible to minimize potential confounding factors.

In A/B or multivariate testing, this can be achieved through random assignment, which helps control for external influences and ensures a fair comparison between the tested variations.

Executing the experiment

With your experiment designed, it’s time to put it into action.

This involves several key considerations:

Timing and duration:

Choose the right timing and duration for your experiment based on factors such as the marketing channel, target audience, and the nature of the tested variables.

The duration of the experiment should be long enough to gather a sufficient amount of data for meaningful analysis but not so long that it negatively affects your marketing efforts or causes fatigue among your target audience.

In general, aim for a duration that allows you to reach a predetermined sample size or achieve statistical significance. This may vary depending on the specific experiment and the desired level of confidence.

Monitoring the experiment:

During the experiment, monitor its progress and performance regularly to ensure that everything is running smoothly and according to plan. This includes checking for technical issues, tracking key metrics, and watching for any unexpected patterns or trends.

If any issues arise during the experiment, address them promptly to prevent potential biases or inaccuracies in the results. Additionally, avoid making changes to the experimental design or variables during the experiment, as this can compromise the integrity of the results.

Analyzing the results

Once your experiment has concluded, it’s time to analyze the data and draw conclusions.

This involves two key aspects:

Statistical significance:

Statistical significance is a measure of the likelihood that the observed differences between the tested variations are due to the variables being tested rather than random chance. To determine statistical significance, you will need to perform a statistical test, such as a t-test or chi-squared test, depending on the nature of your data.

Generally, a result is considered statistically significant if the probability of the observed difference occurring by chance (the p-value) is less than a predetermined threshold, often set at 0.05 or 5%. This means there is a 95% confidence level that the observed difference is due to the tested variables and not random chance.

Practical significance:

While statistical significance is crucial, it’s also essential to consider the practical significance of your results. This refers to the real-world impact of the observed differences on your marketing objectives and business goals.

To assess practical significance, consider the effect size of the observed difference (e.g., the percentage increase in email open rates) and the potential return on investment (ROI) of implementing the winning variation. This will help you determine whether the experiment results are worth acting upon and inform your marketing decisions moving forward.

A systematic approach to designing growth marketing experiments helps you to design, execute, and analyze your experiment effectively, ultimately leading to better marketing outcomes and business growth.

Examples of Successful Marketing Experiments

Examples of Successful Marketing Experiments

In this section, we will explore three fictional case studies of successful marketing experiments that led to improved marketing outcomes. These examples will demonstrate the practical application of marketing experiments across different channels and provide valuable lessons that can be applied to your own marketing efforts.

Example 1: Redesigning a website for increased conversions

AcmeWidgets, an online store selling innovative widgets, noticed that its website conversion rate had plateaued.

They conducted a marketing experiment to test whether a redesigned landing page could improve conversions. They hypothesized that a more visually appealing and user-friendly design would increase conversion rates by 15%.

AcmeWidgets used A/B testing to compare their existing landing page (the control) with a new, redesigned version (the treatment). They randomly assigned website visitors to one of the two landing pages. They tracked conversions over a period of four weeks.

At the end of the experiment, AcmeWidgets found that the redesigned landing page had a conversion rate 18% higher than the control. The results were statistically significant, and the company decided to implement the new design across its entire website.

As a result, AcmeWidgets experienced a substantial increase in sales and revenue.

Example 2: Optimizing email marketing campaigns

EcoTravel, a sustainable travel agency, wanted to improve the open rates of their monthly newsletter. They hypothesized that adding a sense of urgency to the subject line would increase open rates by 10%.

To test this hypothesis, EcoTravel used A/B testing to compare two different subject lines for their newsletter:

  • “Discover the world’s most beautiful eco-friendly destinations” (control)
  • “Last chance to book: Explore the world’s most beautiful eco-friendly destinations” (treatment)

EcoTravel sent the newsletter to a random sample of their subscribers. Half received the control subject line, and the other half received the treatment. They then tracked the open rates for both groups over one week.

The results of the experiment showed that the treatment subject line, which included a sense of urgency, led to a 12% increase in open rates compared to the control.

Based on these findings, EcoTravel incorporated a sense of urgency in their future email subject lines to boost newsletter engagement.

Example 3: Improving social media ad performance

FitFuel, a meal delivery service for fitness enthusiasts, was looking to improve its Facebook ad campaign’s click-through rate (CTR). They hypothesized that using an image of a satisfied customer enjoying a FitFuel meal would increase CTR by 8% compared to their current ad featuring a meal image alone.

FitFuel conducted an A/B test on their Facebook ad campaign, comparing the performance of the control ad (meal image only) with the treatment ad (customer enjoying a meal). They targeted a similar audience with both ad variations and measured the CTR over two weeks. The experiment revealed that the treatment ad, featuring the customer enjoying a meal, led to a 10% increase in CTR compared to the control ad. FitFuel decided to update its

Facebook ad campaign with the new image, resulting in a more cost-effective campaign and higher return on investment.

Lessons learned from these examples

These fictional examples of successful marketing experiments highlight several key takeaways:

  • Clearly defined objectives and hypotheses: In each example, the companies had specific marketing objectives and well-formulated hypotheses, which helped guide their experiments and ensure relevant and actionable results.
  • Proper experimental design: Each company used the appropriate testing method for their experiment and carefully controlled variables, ensuring accurate and reliable results.
  • Data-driven decision-making: The companies analyzed the data from their experiments to make informed decisions about implementing changes to their marketing strategies, ultimately leading to improved outcomes.
  • Continuous improvement: These examples demonstrate that marketing experiments can improve marketing efforts continuously. By regularly conducting experiments and applying the lessons learned, businesses can optimize their marketing strategies and stay ahead of the competition.
  • Relevance across channels: Marketing experiments can be applied across various marketing channels, such as website design, email campaigns, and social media advertising. Regardless of the channel, the principles of marketing experimentation remain the same, making them a valuable tool for marketers in diverse industries.

By learning from these fictional examples and applying the principles of marketing experimentation to your own marketing efforts, you can unlock valuable insights, optimize your marketing strategies, and achieve better results for your business.

Common Pitfalls of Marketing Experiments and How to Avoid Them

Common Pitfalls of Marketing Experiments and How to Avoid Them

Conducting marketing experiments can be a powerful way to optimize your marketing strategies and drive better results.

However, it’s important to be aware of common pitfalls that can undermine the effectiveness of your experiments. In this section, we will discuss some of these pitfalls and provide tips on how to avoid them.

Insufficient sample size

An insufficient sample size can lead to unreliable results and limit the generalizability of your findings. When your sample size is too small, you run the risk of not detecting meaningful differences between the tested variations or incorrectly attributing the observed differences to random chance.

To avoid this pitfall, calculate the required sample size for your experiment based on factors such as the expected effect size, the desired level of confidence, and the type of statistical test you will use.

In general, larger sample sizes provide more reliable and accurate results but may require more resources to conduct the experiment. Consider adjusting your experimental design or testing methods to accommodate a larger sample size if necessary.

Lack of clear objectives

Your marketing experiment may not provide meaningful or actionable insights without clear objectives. Unclear objectives can lead to poorly designed experiments, irrelevant variables, or difficulty interpreting the results.

To prevent this issue, establish specific, measurable, achievable, relevant, and time-bound (SMART) objectives before starting your experiment. These objectives should guide your entire experiment, from hypothesis formulation to data analysis, and ensure that your findings are relevant and useful for your marketing efforts.

Confirmation bias

Confirmation bias occurs when you interpret the results of your experiment in a way that supports your pre-existing beliefs or expectations. This can lead to inaccurate conclusions and suboptimal marketing decisions.

To minimize confirmation bias, approach your experiments with an open mind and be willing to accept results that challenge your assumptions.

Additionally, involve multiple team members in the data analysis process to ensure diverse perspectives and reduce the risk of individual biases influencing the interpretation of the results.

Overlooking external factors

External factors, such as changes in market conditions, seasonal fluctuations, or competitor actions, can influence the results of your marketing experiment and potentially confound your findings. Ignoring these factors may lead to inaccurate conclusions about the effectiveness of your marketing strategies.

To account for external factors, carefully control for potential confounding variables during the experimental design process. This might involve using random assignment, testing during stable periods, or controlling for known external influences.

Consider running follow-up experiments or analyzing historical data to confirm your findings and rule out the impact of external factors.

Tips for avoiding these pitfalls

By being aware of these common pitfalls and following best practices, you can ensure the success of your marketing experiments and obtain valuable insights for your marketing efforts. Here are some tips to help you avoid these pitfalls:

  • Plan your experiment carefully: Invest time in the planning stage to establish clear objectives, calculate an adequate sample size, and design a robust experiment that controls for potential confounding factors.
  • Use a hypothesis-driven approach: Formulate a specific, testable hypothesis based on existing knowledge or data to guide your experiment and focus on the most relevant variables and outcomes.
  • Monitor your experiment closely: Regularly check the progress of your experiment, address any issues that arise, and ensure that your experiment is running smoothly and according to plan.
  • Analyze your data objectively: Use statistical techniques to determine the significance of your results and consider the practical implications of your findings before making marketing decisions.
  • Learn from your experiments: Apply the lessons learned from your experiments to continuously improve your marketing strategies and stay ahead of the competition.

By avoiding these common pitfalls and following best practices, you can increase the effectiveness of your marketing experiments, gain valuable insights into customer preferences and behaviors, and ultimately drive better results for your business.

Building a Culture of Experimentation

Building a Culture of Experimentation

To truly reap the benefits of marketing experiments, it’s essential to build a culture of experimentation within your organization. This means fostering an environment where curiosity, learning, data-driven decision-making, and collaboration are valued and encouraged.

Encouraging curiosity and learning within your organization

Cultivating curiosity and learning starts with leadership. Encourage your team to ask questions, explore new ideas, and embrace a growth mindset.

Promote ongoing learning by providing resources, such as training programs, workshops, or access to industry events, that help your team stay up-to-date with the latest marketing trends and techniques.

Create a safe environment where employees feel comfortable sharing their ideas and taking calculated risks. Emphasize the importance of learning from both successes and failures and treat every experiment as an opportunity to grow and improve.

Adopting a data-driven mindset

A data-driven mindset is crucial for successful marketing experimentation. Encourage your team to make decisions based on data rather than relying on intuition or guesswork. This means analyzing the results of your experiments objectively, using statistical techniques to determine the significance of your findings, and considering the practical implications of your results before making marketing decisions.

To foster a data-driven culture, invest in the necessary tools and technologies to collect, analyze, and visualize data effectively. Train your team on how to use these tools and interpret the data to make informed marketing decisions.

Regularly review your data-driven efforts and adjust your strategies as needed to continuously improve and optimize your marketing efforts.

Integrating experimentation into your marketing strategy

Establish a systematic approach to conducting marketing experiments to fully integrate experimentation into your marketing strategy. This might involve setting up a dedicated team or working group responsible for planning, executing, and analyzing experiments or incorporating experimentation as a standard part of your marketing processes.

Create a roadmap for your marketing experiments that outlines each project’s objectives, hypotheses, and experimental designs. Monitor the progress of your experiments and adjust your roadmap as needed based on the results and lessons learned.

Ensure that your marketing team has the necessary resources, such as time, budget, and tools, to conduct experiments effectively. Set clear expectations for the role of experimentation in your marketing efforts and emphasize its importance in driving better results and continuous improvement.

Collaborating across teams for a holistic approach

Marketing experiments often involve multiple teams within an organization, such as design, product, sales, and customer support. Encourage cross-functional collaboration to ensure a holistic approach to experimentation and leverage each team’s unique insights and expertise.

Establish clear communication channels and processes for sharing information and results from your experiments. This might involve regular meetings, shared documentation, or internal presentations to keep all stakeholders informed and engaged.

Collaboration also extends beyond your organization. Connect with other marketing professionals, industry experts, and thought leaders to learn from their experiences, share your own insights, and stay informed about the latest trends and best practices in marketing experimentation.

By building a culture of experimentation within your organization, you can unlock valuable insights, optimize your marketing strategies, and drive better results for your business.

Encourage curiosity and learning, adopt a data-driven mindset, integrate experimentation into your marketing strategy, and collaborate across teams to create a strong foundation for marketing success.

If you’re new to marketing experiments, don’t be intimidated—start small and gradually expand your efforts as your confidence grows. By embracing a curious and data-driven mindset, even small-scale experiments can lead to meaningful insights and improvements.

As you gain experience, you can tackle more complex experiments and further refine your marketing strategies.

Remember, continuous learning and improvement is the key to success in marketing experimentation. By regularly conducting experiments, analyzing the results, and applying the lessons learned, you can stay ahead of the competition and drive better results for your business.

So, take the plunge and start experimenting today—your marketing efforts will be all the better.

#ezw_tco-2 .ez-toc-title{ font-size: 120%; ; ; } #ezw_tco-2 .ez-toc-widget-container ul.ez-toc-list li.active{ background-color: #ededed; } Table of Contents

Manage your remote team with teamly. get your 100% free account today..

hypothesis for marketing research

PC and Mac compatible

image

Teamly is everywhere you need it to be. Desktop download or web browser or IOS/Android app. Take your pick.

Get Teamly for FREE by clicking below.

No credit card required. completely free.

image

Teamly puts everything in one place, so you can start and finish projects quickly and efficiently.

Keep reading.

Transparency in project management

Project Management

Why Transparency In Project Management Is Critical To Success

Why Transparency In Project Management Is Critical To SuccessCreating a layer of transparency in project management can be tricky but it is essential to navigate. Having visibility and accessibility into the inner workings of a company’s processes, projects, and progression can cultivate an environment fueled by trust, which is vital to building a team that …

Continue reading “Why Transparency In Project Management Is Critical To Success”

Max 10 min read

Secondments

Best Practices

Why Are Secondments Important? Some Key Advantages and Disadvantages

Why Are Secondments Important? Some Key Advantages and Disadvantages“Why do you go away? So that you can come back. So that you can see the place you came from with new eyes and extra colors. And the people there see you differently, too. Coming back to where you started is not the same as never …

Continue reading “Why Are Secondments Important? Some Key Advantages and Disadvantages”

Image represents Social Loafing Examples

7 Relatable Examples of Social Loafing You’ve Definitely Experienced

7 Relatable Examples of Social Loafing You’ve Definitely ExperiencedHave you ever been part of a group project where some people didn’t seem to be putting in the same effort? Well, it turns out there’s a psychological phenomenon for that… It’s called social loafing, and it refers to the tendency of team members to put forth …

Continue reading “7 Relatable Examples of Social Loafing You’ve Definitely Experienced”

Max 8 min read

Project Management Software Comparisons

Asana

Asana vs Wrike

Basecamp

Basecamp vs Slack

Smartsheet

Smartsheet vs Airtable

Trello

Trello vs ClickUp

Monday.com

Monday.com vs Jira Work Management

Trello vs asana.

Get Teamly for FREE Enter your email and create your account today!

You must enter a valid email address

You must enter a valid email address!

Marketing Analytics Lab

Marketing Analytics Lab

Hypothesis Testing in Marketing Research

Hypothesis Testing in Marketing Research

Hypothesis testing is a fundamental statistical method used in marketing research to make inferences about a population based on sample data. It helps researchers and marketers determine whether there is enough evidence to support a specific claim or hypothesis about consumer behavior, market trends, or the effectiveness of marketing strategies. This article explores the principles of hypothesis testing, its application in marketing research, and the key concepts and techniques involved.

1. What is Hypothesis Testing?

Overview : Hypothesis testing is a statistical procedure used to evaluate whether a hypothesis about a population parameter is supported by sample data. The process involves making a claim, testing it against observed data, and determining whether to accept or reject the claim based on statistical evidence.

Key Concepts :

  • Null Hypothesis (H₀) : The null hypothesis represents the default assumption that there is no effect or difference. It is the hypothesis that researchers seek to test against.
  • Alternative Hypothesis (H₁ or Ha) : The alternative hypothesis represents the claim that there is an effect or difference. It is what researchers aim to provide evidence for.
  • Significance Level (α) : The significance level, often set at 0.05, is the probability of rejecting the null hypothesis when it is actually true. It defines the threshold for determining statistical significance.
  • P-Value : The p-value is the probability of obtaining test results at least as extreme as the observed results, assuming the null hypothesis is true. A p-value less than the significance level indicates strong evidence against the null hypothesis.
  • Test Statistic : The test statistic is a standardized value calculated from the sample data used to determine whether to reject the null hypothesis. Common test statistics include t-values, z-values, and F-values.

2. Steps in Hypothesis Testing

1. Formulate Hypotheses :

  • Null Hypothesis (H₀) : State the default assumption, such as “There is no difference in customer satisfaction before and after implementing a new marketing campaign.”
  • Alternative Hypothesis (H₁) : State the claim being tested, such as “There is a difference in customer satisfaction before and after implementing a new marketing campaign.”

2. Choose the Significance Level (α) :

  • Typically set at 0.05, 0.01, or 0.10, depending on the research context and desired level of confidence.

3. Collect and Analyze Data :

  • Gather data through surveys, experiments, or other methods and calculate the test statistic based on the sample data.

4. Determine the P-Value :

  • Compare the p-value to the significance level to assess the strength of evidence against the null hypothesis.

5. Make a Decision :

  • Reject H₀ : If the p-value is less than the significance level, reject the null hypothesis and accept the alternative hypothesis.
  • Fail to Reject H₀ : If the p-value is greater than the significance level, fail to reject the null hypothesis.

6. Draw Conclusions :

  • Interpret the results in the context of the research question and make recommendations based on the findings.

3. Applications in Marketing Research

A. evaluating marketing campaign effectiveness.

Overview : Hypothesis testing can assess whether a marketing campaign has significantly impacted consumer behavior or sales performance.

  • Null Hypothesis (H₀) : “The new marketing campaign has no effect on sales.”
  • Alternative Hypothesis (H₁) : “The new marketing campaign has a significant effect on sales.”

Application :

  • Analyze pre- and post-campaign sales data to determine if there is a statistically significant increase in sales.
  • Data-Driven Decisions : Make informed decisions about continuing, modifying, or discontinuing marketing campaigns based on statistical evidence.

b. Testing Product Preferences

Overview : Hypothesis testing can help understand consumer preferences and evaluate whether different product features or attributes influence purchasing decisions.

  • Null Hypothesis (H₀) : “There is no difference in consumer preference between Product A and Product B.”
  • Alternative Hypothesis (H₁) : “There is a significant difference in consumer preference between Product A and Product B.”
  • Conduct surveys or experiments to compare consumer preferences and analyze the results to determine if there is a significant difference.
  • Product Development : Use findings to guide product development and design strategies that align with consumer preferences.

c. Assessing Customer Satisfaction

Overview : Hypothesis testing can evaluate changes in customer satisfaction levels due to changes in products, services, or customer experience initiatives.

  • Null Hypothesis (H₀) : “Customer satisfaction scores have not changed after implementing the new customer service strategy.”
  • Alternative Hypothesis (H₁) : “Customer satisfaction scores have significantly changed after implementing the new customer service strategy.”
  • Analyze customer satisfaction survey data before and after the implementation of the strategy to assess the impact.
  • Improvement Strategies : Identify effective strategies for enhancing customer satisfaction and loyalty.

d. Market Segmentation Analysis

Overview : Hypothesis testing can be used to evaluate whether different market segments have distinct characteristics or responses to marketing efforts.

  • Null Hypothesis (H₀) : “There is no difference in purchase behavior between different customer segments.”
  • Alternative Hypothesis (H₁) : “There is a significant difference in purchase behavior between different customer segments.”
  • Analyze purchase data from different segments to identify significant differences and tailor marketing strategies accordingly.
  • Targeted Marketing : Develop targeted marketing strategies based on differences in behavior between market segments.

4. Common Hypothesis Tests in Marketing Research

Overview : The t-test is used to compare the means of two groups to determine if they are significantly different from each other.

  • Independent Samples t-Test : Compares means between two independent groups (e.g., control vs. treatment groups).
  • Paired Samples t-Test : Compares means from the same group at different times (e.g., pre- and post-campaign).

b. Chi-Square Test

Overview : The chi-square test assesses the association between categorical variables.

  • Evaluate whether there is a significant relationship between categorical variables, such as product preference by demographic group.

c. ANOVA (Analysis of Variance)

Overview : ANOVA is used to compare means across three or more groups to determine if there are significant differences among them.

  • Assess differences in consumer satisfaction or purchasing behavior across multiple product categories or market segments.

5. Challenges and Considerations

A. sample size.

Overview : The accuracy of hypothesis testing results depends on the sample size. Small sample sizes may lead to unreliable results.

Considerations :

  • Power Analysis : Conduct power analysis to determine the appropriate sample size needed to detect meaningful differences.

b. Assumptions

Overview : Hypothesis tests rely on certain assumptions, such as normality and equal variances. Violations of these assumptions can affect test results.

  • Test Assumptions : Check and address assumptions before conducting hypothesis tests.

c. Interpreting Results

Overview : Proper interpretation of results is crucial for making informed decisions. Avoid overinterpreting results based on statistical significance alone.

  • Practical Significance : Consider the practical significance and relevance of findings in addition to statistical significance.

6. Conclusion: Utilizing Hypothesis Testing in Marketing Research

Hypothesis testing is a valuable tool in marketing research for making data-driven decisions and evaluating the effectiveness of marketing strategies. By formulating hypotheses, analyzing data, and interpreting results, businesses can gain insights into consumer behavior, assess marketing initiatives, and optimize strategies.

Despite challenges such as sample size and assumptions, hypothesis testing provides a structured approach to understanding and addressing marketing questions. By leveraging hypothesis testing, businesses can enhance their marketing efforts, improve decision-making, and achieve greater success in a competitive marketplace.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Tips to Create and Test a Value Hypothesis: A Step-by-Step Guide

Tips to Create and Test a Value Hypothesis: A Step-by-Step Guide

Rapidr

Developing a robust value hypothesis is crucial as you bring a new product to market, guiding your startup toward answering a genuine market need. Constructing a verifiable value hypothesis anchors your product's development process in customer feedback and data-driven insight rather than assumptions.

This framework enables you to clarify the potential value your product offers and provides a foundation for testing and refining your approach, significantly reducing the risk of misalignment with your target market. To set the stage for success, employ logical structures and objective measures, such as creating a minimum viable product, to effectively validate your product's value proposition.

What Is a Verifiable Value Hypothesis?

A verifiable value hypothesis articulates your belief about how your product will deliver value to customers. It is a testable prediction aimed at demonstrating the expected outcomes for your target market.

To ensure that your value hypothesis is verifiable, it should adhere to the following conditions:

  • Specific : Clearly defines the value proposition and the customer segment.
  • Measurable : Includes metrics by which you can assess success or failure.
  • Achievable : Realistic based on your resources and market conditions.
  • Relevant : Directly addresses a significant customer need or desire.
  • Time-Bound : Has a defined period for testing and validation.

When you create a value hypothesis, you're essentially forming the backbone of your business model. It goes beyond a mere assumption and relies on customer feedback data to inform its development. You also safeguard it with objective measures, such as a minimum viable product, to test the hypothesis in real life.

By articulating and examining a verifiable value hypothesis, you understand your product's potential impact and reduce the risk associated with new product development. It's about making informed decisions that increase your confidence in the product's potential success before committing significant resources.

Value Hypotheses vs. Growth Hypotheses

Value hypotheses and growth hypotheses are two distinct concepts often used in business, especially in the context of startups and product development.

Value Hypotheses : A value hypothesis is centered around the product itself. It focuses on whether the product truly delivers customer value. Key questions include whether the product meets a real need, how it compares to alternatives, and if customers are willing to pay for it. Valuing a value hypothesis is crucial before a business scales its operations.

Growth Hypotheses : A growth hypothesis, on the other hand, deals with the scalability and marketing aspects of the business. It involves strategies and channels used to acquire new customers. The focus is on how to grow the customer base, the cost-effectiveness of growth strategies, and the sustainability of growth. Validating a growth hypothesis is typically the next step after confirming that the product has value to the customers.

In practice, both hypotheses are crucial for the success of a business. A value hypothesis ensures the product is desirable and needed, while a growth hypothesis ensures that the product can reach a larger market effectively.

Tips to Create and Test a Verifiable Value Hypothesis

Creating a value hypothesis is crucial for understanding what drives customer interest in your product. It's an educated guess that requires rigor to define and clarity to test. When developing a value hypothesis, you're attempting to validate assumptions about your product's value to customers. Here are concise tips to help you with this process:

1. Understanding Your Market and Customers

Before formulating a hypothesis, you need a deep understanding of your market and potential customers. You're looking to uncover their pain points and needs which your product aims to address.

Begin with thorough market research and collect customer feedback to ensure your idea is built upon a solid foundation of real-world insights. This understanding is pivotal as it sets the tone for a relevant and testable hypothesis.

  • Define Your Value Proposition Clearly: Articulate your product's value to the user. What problem does it solve? How does it improve the user's life or work?
  • Identify Your Target Audience. Determine who your ideal customers are. Understand their needs, pain points, and how they currently address the problem your product intends to solve.

2. Defining Clear Assumptions

The next step is to outline clear assumptions based on your idea that you believe will bring value to your customers. Each assumption should be an assertion that directly relates to how your customers will find your product valuable.

For example, if your product is a task management app, you might assume that the ability to share task lists with team members is a pain point for your potential customers. Remember, assumptions are not facts—they are educated guesses that need verification.

3. Identify Key Metrics for Your Hypothesis Test

Once you've defined your assumptions, delineate the framework for testing your value hypothesis. This involves designing experiments that validate or invalidate your assumptions with measurable outcomes. Ensure that your hypothesis can be tested with measurable outcomes. This could be in the form of user engagement metrics, conversion rates, or customer satisfaction scores.

Determine what success looks like and define objective metrics that will prove your product's value. This could be user engagement, conversion rates, or revenue. Choosing the right metrics is essential for an accurate test. For instance, in your test, you might measure the increase in customer retention or the decrease in time spent on task organization with your app. Construct your test so that the results are unequivocal and actionable.

4. Construct a Testable Proposition

Formulate your hypothesis in a way that can be tested empirically. Use qualitative research methods such as interviews, surveys, and observation to gather data about your potential users. Formulate your value hypothesis based on insights from this research. Plan experiments that can validate or invalidate your value hypothesis. This might involve A/B testing, user testing sessions, or pilot programs.

A good example is to posit that "Introducing feature X will increase user onboarding by Y%." Avoid complexity by testing one variable simultaneously. This helps you identify which changes are actually making a difference.

5. Applying Evidence to Innovation

When your data indicates a promising avenue for product development , it's imperative that you validate your growth hypothesis through experimentation. Align your value proposition with the evidence at hand.

Develop a simplified version of your product that allows you to test the core value proposition with real users without investing in full-scale production. Start by crafting a minimum viable product ( MVP ) to begin testing in the market. This approach helps mitigate risk by not investing heavily in unproven ideas. Use analytics tools to collect data on how users interact with your MVP. Look for patterns that either support or contradict your value hypothesis.

If the data suggests that your value hypothesis is wrong, be prepared to revise your hypothesis or pivot your product strategy accordingly.

6. Gather Customer Feedback

Integrating customer feedback into your product development process can create a more tailored value proposition. This step is crucial in refining your product to meet user needs and validate your hypotheses.

Use customer feedback tools to collect data on how users interact with your MVP. Look for patterns that either support or contradict your value hypothesis. Here are some ways to collect feedback effectively :

  • Feedback portals
  • User testing sessions
  • In-app feedback
  • Website widgets
  • Direct interviews
  • Focus groups
  • Feedback forums

Create a centralized place for product feedback to keep track of different types of customer feedback and improve SaaS products while listening to their customers. Rapidr helps companies be more customer-centric by consolidating feedback across different apps, prioritizing requests, having a discourse with customers, and closing the feedback loop.

hypothesis for marketing research

7. Analyze and Iterate Quickly

Review the data and analyze customer feedback to see if it supports your hypothesis. If your hypothesis is not supported, iterate on your assumptions, and test again. Keep a detailed record of your hypotheses, experiments, and findings. This documentation will help you understand the evolution of your product and guide future decision-making.

Use the feedback and data from your tests to make quick iterations of your product and drive product development . This allows you to refine your value proposition and improve the fit with your target audience. Engage with your users throughout the process. Real-world feedback is invaluable and can provide insights that data alone cannot.

  • Identify Patterns : What commonalities are present in the feedback?
  • Implement Changes : Prioritize and make adjustments based on customer insights.

hypothesis for marketing research

9. Align with Business Goals and Stay Customer-Focused

Ensure that your value hypothesis aligns with the broader goals of your business. The value provided should ultimately contribute to the success of the company. Remember that the ultimate goal of your value hypothesis is to deliver something that customers find valuable. Maintain a strong focus on customer needs and satisfaction throughout the process.

10. Communicate with Stakeholders and Update them

Keep all stakeholders informed about your findings and the implications for the product. Clear communication helps ensure everyone is aligned and understands the rationale behind product decisions. Communicate and close the feedback loop with the help of a product changelog through which you can ​​announce new changes and engage with customers.

hypothesis for marketing research

Understanding and validating a value hypothesis is essential for any business, particularly startups. It involves deeply exploring whether a product or service meets customer needs and offers real value. This process ensures that resources are invested in desirable and useful products, and it's a critical step before considering scalability and growth.

By focusing on the value hypothesis, businesses can better align their offerings with market demand, leading to more sustainable success. Placing customer feedback at the center of the process of testing a value hypothesis helps you develop a product that meets your customers' needs and stands out in the market.

Rapidr helps companies be more customer-centric by consolidating feedback across different apps, prioritizing requests, having a discourse with customers, and closing the feedback loop.

Build better products with user feedback

Rapidr helps SaaS companies understand what customers need through feedback, prioritize what to build next, inform the roadmap, and notify customers on product releases

Rapidr Blog: Customer Led Development & Building Better Products icon

  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

Step-by-Step Guide: How to Craft a Strong Research Hypothesis

  • 4 minute read
  • 384.3K views

Table of Contents

A research hypothesis is a concise statement about the expected result of an experiment or project. In many ways, a research hypothesis represents the starting point for a scientific endeavor, as it establishes a tentative assumption that is eventually substantiated or falsified, ultimately improving our certainty about the subject investigated.   

To help you with this and ease the process, in this article, we discuss the purpose of research hypotheses and list the most essential qualities of a compelling hypothesis. Let’s find out!  

How to Craft a Research Hypothesis  

Crafting a research hypothesis begins with a comprehensive literature review to identify a knowledge gap in your field. Once you find a question or problem, come up with a possible answer or explanation, which becomes your hypothesis. Now think about the specific methods of experimentation that can prove or disprove the hypothesis, which ultimately lead to the results of the study.   

Enlisted below are some standard formats in which you can formulate a hypothesis¹ :  

  • A hypothesis can use the if/then format when it seeks to explore the correlation between two variables in a study primarily.  

Example: If administered drug X, then patients will experience reduced fatigue from cancer treatment.  

  • A hypothesis can adopt when X/then Y format when it primarily aims to expose a connection between two variables  

Example: When workers spend a significant portion of their waking hours in sedentary work , then they experience a greater frequency of digestive problems.  

  • A hypothesis can also take the form of a direct statement.  

Example: Drug X and drug Y reduce the risk of cognitive decline through the same chemical pathways  

What are the Features of an Effective Hypothesis?  

Hypotheses in research need to satisfy specific criteria to be considered scientifically rigorous. Here are the most notable qualities of a strong hypothesis:  

  • Testability: Ensure the hypothesis allows you to work towards observable and testable results.  
  • Brevity and objectivity: Present your hypothesis as a brief statement and avoid wordiness.  
  • Clarity and Relevance: The hypothesis should reflect a clear idea of what we know and what we expect to find out about a phenomenon and address the significant knowledge gap relevant to a field of study.   

Understanding Null and Alternative Hypotheses in Research  

There are two types of hypotheses used commonly in research that aid statistical analyses. These are known as the null hypothesis and the alternative hypothesis . A null hypothesis is a statement assumed to be factual in the initial phase of the study.   

For example, if a researcher is testing the efficacy of a new drug, then the null hypothesis will posit that the drug has no benefits compared to an inactive control or placebo . Suppose the data collected through a drug trial leads a researcher to reject the null hypothesis. In that case, it is considered to substantiate the alternative hypothesis in the above example, that the new drug provides benefits compared to the placebo.  

Let’s take a closer look at the null hypothesis and alternative hypothesis with two more examples:  

Null Hypothesis:  

The rate of decline in the number of species in habitat X in the last year is the same as in the last 100 years when controlled for all factors except the recent wildfires.  

In the next experiment, the researcher will experimentally reject this null hypothesis in order to confirm the following alternative hypothesis :  

The rate of decline in the number of species in habitat X in the last year is different from the rate of decline in the last 100 years when controlled for all factors other than the recent wildfires.  

In the pair of null and alternative hypotheses stated above, a statistical comparison of the rate of species decline over a century and the preceding year will help the research experimentally test the null hypothesis, helping to draw scientifically valid conclusions about two factors—wildfires and species decline.   

We also recommend that researchers pay attention to contextual echoes and connections when writing research hypotheses. Research hypotheses are often closely linked to the introduction ² , such as the context of the study, and can similarly influence the reader’s judgment of the relevance and validity of the research hypothesis.  

Seasoned experts, such as professionals at Elsevier Language Services, guide authors on how to best embed a hypothesis within an article so that it communicates relevance and credibility. Contact us if you want help in ensuring readers find your hypothesis robust and unbiased.  

References  

  • Hypotheses – The University Writing Center. (n.d.). https://writingcenter.tamu.edu/writing-speaking-guides/hypotheses  
  • Shaping the research question and hypothesis. (n.d.). Students. https://students.unimelb.edu.au/academic-skills/graduate-research-services/writing-thesis-sections-part-2/shaping-the-research-question-and-hypothesis  

Systematic Literature Review or Literature Review

Systematic Literature Review or Literature Review?

Problem Statement

How to Write an Effective Problem Statement for Your Research Paper

You may also like.

Academic paper format

Submission 101: What format should be used for academic papers?

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

How to Ensure Inclusivity in Your Scientific Writing

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Input your search keywords and press Enter.

hypothesis for marketing research

  • Subscribers
  • How To Use a New AI App and AI Agents To Build Your Best Landing Page
  • The MECLABS AI Guild in Action: Teamwork in Crafting Their Optimal Landing Page
  • How MECLABS AI Is Being Used To Build the AI Guild
  • MECLABS AI’s Problem Solver in Action
  • MECLABS AI: Harness AI With the Power of Your Voice
  • Harnessing MECLABS AI: Transform Your Copywriting and Landing Pages
  • MECLABS AI: Overcome the ‘Almost Trap’ and Get Real Answers
  • MECLABS AI: A brief glimpse into what is coming!
  • Transforming Marketing with MECLABS AI: A New Paradigm
  • Creative AI Marketing: Escaping the ‘Vending Machine Mentality’

MarketingExperiments

A/B Testing: Example of a good hypothesis

'  data-src=

Want to know the secret to always running successful tests?

The answer is to formulate a hypothesis .

Now when I say it’s always successful, I’m not talking about always increasing your Key Performance Indicator (KPI). You can “lose” a test, but still be successful.

That sounds like an oxymoron, but it’s not. If you set up your test strategically, even if the test decreases your KPI, you gain a learning , which is a success! And, if you win, you simultaneously achieve a lift and a learning. Double win!

The way you ensure you have a strategic test that will produce a learning is by centering it around a strong hypothesis.

So, what is a hypothesis?

By definition, a hypothesis is a proposed statement made on the basis of limited evidence that can be proved or disproved and is used as a starting point for further investigation.

Let’s break that down:

It is a proposed statement.

  • A hypothesis is not fact, and should not be argued as right or wrong until it is tested and proven one way or the other.

It is made on the basis of limited (but hopefully some ) evidence.

  • Your hypothesis should be informed by as much knowledge as you have. This should include data that you have gathered, any research you have done, and the analysis of the current problems you have performed.

It can be proved or disproved.

  • A hypothesis pretty much says, “I think by making this change , it will cause this effect .” So, based on your results, you should be able to say “this is true” or “this is false.”

It is used as a starting point for further investigation.

  • The key word here is starting point . Your hypothesis should be formed and agreed upon before you make any wireframes or designs as it is what guides the design of your test. It helps you focus on what elements to change, how to change them, and which to leave alone.

How do I write a hypothesis?

The structure of your basic hypothesis follows a CHANGE: EFFECT framework.

hypothesis for marketing research

While this is a truly scientific and testable template, it is very open-ended. Even though this hypothesis, “Changing an English headline into a Spanish headline will increase clickthrough rate,” is perfectly valid and testable, if your visitors are English-speaking, it probably doesn’t make much sense.

So now the question is …

How do I write a GOOD hypothesis?

To quote my boss Tony Doty , “This isn’t Mad Libs.”

We can’t just start plugging in nouns and verbs and conclude that we have a good hypothesis. Your hypothesis needs to be backed by a strategy. And, your strategy needs to be rooted in a solution to a problem .

So, a more complete version of the above template would be something like this:

hypothesis for marketing research

In order to have a good hypothesis, you don’t necessarily have to follow this exact sentence structure, as long as it is centered around three main things:

Presumed problem

Proposed solution

Anticipated result

After you’ve completed your analysis and research, identify the problem that you will address. While we need to be very clear about what we think the problem is, you should leave it out of the hypothesis since it is harder to prove or disprove. You may want to come up with both a problem statement and a hypothesis .

For example:

Problem Statement: “The lead generation form is too long, causing unnecessary friction .”

Hypothesis: “By changing the amount of form fields from 20 to 10, we will increase number of leads.”

When you are thinking about the solution you want to implement, you need to think about the psychology of the customer. What psychological impact is your proposed problem causing in the mind of the customer?

For example, if your proposed problem is “There is a lack of clarity in the sign-up process,” the psychological impact may be that the user is confused.

Now think about what solution is going to address the problem in the customer’s mind. If they are confused, we need to explain something better, or provide them with more information. For this example, we will say our proposed solution is to “Add a progress bar to the sign-up process.”  This leads straight into the anticipated result.

If we reduce the confusion in the visitor’s mind (psychological impact) by adding the progress bar, what do we foresee to be the result? We are anticipating that it would be more people completing the sign-up process. Your proposed solution and your KPI need to be directly correlated.

Note: Some people will include the psychological impact in their hypothesis. This isn’t necessarily wrong, but we do have to be careful with assumptions. If we say that the effect will be “Reduced confusion and therefore increase in conversion rate,” we are assuming the reduced confusion is what made the impact. While this may be correct, it is not measureable and it is hard to prove or disprove.

To summarize, your hypothesis should follow a structure of: “If I change this, it will have this effect,” but should always be informed by an analysis of the problems and rooted in the solution you deemed appropriate.

Related Resources:

A/B Testing 101: How to get real results from optimization

The True Value of Data

15 Years of Marketing Research in 11 Minutes

Marketing Analytics: 6 simple steps for interpreting your data

Website A/B Testing: 4 tips to beat an unbeatable landing page

'  data-src=

Online Cart: 6 ideas to test and optimize your checkout process

B2B Gamification: Autodesk’s two approaches to in-trial marketing [Video]

How to Discover Exactly What the Customer Wants to See on the Next Click: 3 critical…

The 21 Psychological Elements that Power Effective Web Design (Part 3)

The 21 Psychological Elements that Power Effective Web Design (Part 2)

The 21 Psychological Elements that Power Effective Web Design (Part 1)

'  data-src=

Thanks for the article. I’ve been trying to wrap my head around this type of testing because I’d like to use it to see the effectiveness on some ads. This article really helped. Thanks Again!

'  data-src=

Hey Lauren, I am just getting to the point that I have something to perform A-B testing on. This post led me to this site which will and already has become a help in what to test and how to test .

Again, thanks for getting me here .

'  data-src=

Good article. I have been researching different approaches to writing testing hypotheses and this has been a help. The only thing I would add is that it can be useful to capture the insight/justification within the hypothesis statement. IF i do this, THEN I expect this result BECAUSE I have this insight.

'  data-src=

@Kaya Great!

'  data-src=

Good article – but technically you can never prove an hypothesis, according to the principle of falsification (Popper), only fail to disprove the null hypothesis.

Leave A Reply Cancel Reply

Your email address will not be published.

Save my name, email, and website in this browser for the next time I comment.

  • Quick Win Clinics
  • Research Briefs
  • A/B Testing
  • Conversion Marketing
  • Copywriting
  • Digital Advertising
  • Digital Analytics
  • Digital Subscriptions
  • E-commerce Marketing
  • Email Marketing
  • Lead Generation
  • Social Marketing
  • Value Proposition
  • Research Services
  • Video – Transparent Marketing
  • Video – 15 years of marketing research in 11 minutes
  • Lecture – The Web as a Living Laboratory
  • Featured Research

Welcome, Login to your account.

Recover your password.

A password will be e-mailed to you.

Hypotheses in Marketing Science: Literature Review and Publication Audit

  • Published: May 2001
  • Volume 12 , pages 171–187, ( 2001 )

Cite this article

hypothesis for marketing research

  • J. Scott Armstrong 1 ,
  • Roderick J. Brodie 2 &
  • Andrew G. Parsons 2  

974 Accesses

91 Citations

3 Altmetric

Explore all metrics

We examined three approaches to research in marketing: exploratory hypotheses, dominant hypothesis, and competing hypotheses. Our review of empirical studies on scientific methodology suggests that the use of a single dominant hypothesis lacks objectivity relative to the use of exploratory and competing hypotheses approaches. We then conducted a publication audit of over 1,700 empirical papers in six leading marketing journals during 1984–1999. Of these, 74% used the dominant hypothesis approach, while 13% used multiple competing hypotheses, and 13% were exploratory. Competing hypotheses were more commonly used for studying methods (25%) than models (17%) and phenomena (7%). Changes in the approach to hypotheses since 1984 have been modest; there was a slight decrease in the percentage of competing hypotheses to 11%, which is explained primarily by an increasing proportion of papers on phenomena. Of the studies based on hypothesis testing, only 11% described the conditions under which the hypotheses would apply, and dominant hypotheses were below competing hypotheses in this regard. Marketing scientists differed substantially in their opinions about what types of studies should be published and what was published. On average, they did not think dominant hypotheses should be used as often as they were, and they underestimated their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

hypothesis for marketing research

Normative Criteria for the Development and Appraisal of Marketing Theory

hypothesis for marketing research

Research Method Topics and Issues that Reduce the Value of Reported Empirical Insights in the Marketing Literatures: An Abstract

hypothesis for marketing research

Marketing Theory: The Present Stage Of Development

References for appendix 2.

Agarwal MK, and VR Rao. (1996). “An Empirical Comparison of Consumer-Based Measures of Brand Equity,” Marketing Letters , 7, 237–248.

Google Scholar  

Bult JR, and T Wansbeek. (1995). “Optimal Selection for Direct Mail,” Marketing Science , 14(4) 378–394.

Foekens EW, PSH Leeflang, and DR Wittink. (1997). “Hierarchical Versus Other Market Share Models for Markets with Many Items,” International Journal of Research in Marketing , 14, 359–378.

Johnson MD, EW Anderson, and C Fornell. (1995). “Rational and Adaptive Performance Expectations in a Customer Satisfaction Framework,” Journal of Consumer Research , 21, 695–707.

Krafft M. (1999). “An empirical Investigation of the Antecedents of Sales Force Control Systems,” Journal of Marketing , 63, 120–134.

Mittal V, P Kumar, and M Tsiros. (1999). “Attribute-level Performance, Satisfaction, and Behavioural Intentions over Time: A Consumption System Approach,” Journal of Marketing , 63, 88–101.

Naik PA, MK Mantrala, and AG Sawyer. (1998). “Planning Media Schedules in the Presence of Dynamic Advertising Quality,” Marketing Science , 17, 214–235.

Pechmann C, and C Shih. (1999). “Smoking Scenes in Movies and Antismoking Advertisements before Movies: Effects on Youth,” Journal of Marketing , 63, 1–13.

Szymanski DM, LC Troy, and SG Bharadwaj. (1995). “Order of Entry and Business Performance: An Empirical Synthesis and Reexamination,” Journal of Marketing , 59, 17–33.

Abramowitz SI, B Gomes, and CV Abramowitz. (1975). “Publish or Politic: Referee Bias in Manuscript Review,” Journal of Applied Social Psychology , 5, 187–200.

AMA Task Force on the Development of Marketing Thought. (1988). “Developing, Disseminating, and Utilizing Marketing Knowledge,” Journal of Marketing , 52, 1–25.

Anderson LM. (1994). “Marketing Science: Where's the Beef?” Business Horizons , (Jan–Feb), 8–16.

Armstrong JS. (1979). “Advocacy and Objectivity in Science,” Management Science , 25, 423–428.

Armstrong JS. (1980). “Advocacy as a Scientific Strategy: The Mitroff Myth,” Academy of Management Review , 5, 509–511.

Armstrong JS. (1988). “Research Needs in Forecasting,” International Journal of Forecasting , 4, 449–465.

Armstrong JS. (1991). “Prediction of Consumer Behavior by Experts and Novices,” Journal of Consumer Research , 18, 251–256.

Armstrong JS, and R. Hubbard. (1991). “Does the Need for Agreement Among Reviewers Inhibit the Publication of Controversial Findings?” Behavioral and Brain Sciences , 14, 136–137.

Bass FM. (1993). “The Future of Research in Marketing: Marketing Science,” Journal of Marketing Research , 30, 1–6.

Begg CB, and JA Berlin. (1989). “Publication Bias and Dissemination of Clinical Research,” Journal of the National Cancer Institute , 81(2), 107–115.

Ben-Shakar G, M Bar-Hillel, Y Bilu, and G Shefler. (1998). “Seek and Ye Shall Find: Test Results Are What You Hypothesize They Are,” Journal of Behavioral Decision Making , 11, 235–249.

Bettman JR, N Capon, and RJ Lutz. (1975). “Cognitive Algebra in Multi-Attribute Attitude Models,” Journal of Marketing Research , 12, 151–164.

Bloom PN. (1987). Knowledge Development in Marketing . Lexington, MA: Lexington Books.

Burger JM, and R Petty. (1981). “The Low-Ball Compliance Technique: Task or Person Commitment?” Journal of Personality and Social Psychology , 40, 492–500.

Broad W, and N Wade. (1982). Betrayers of the Truth: Fraud and Deceit in the Halls of Science . New York: Simon and Schuster.

Bruner J, and MC Potter. (1964). “Interference in Visual Recognition,” Science , 144, 424–425.

Chamberlin TC. (1965). “The Method of Multiple Working Hypotheses,” Science , 148, 754–759. (Reprint of an 1890 paper).

Chapman LJ, and JP Chapman. (1969). “Illusory Correlation as an Obstacle to the Use of Valid Psychodiagnostic Signs,” Journal of Abnormal Psychology , 74, 271–280.

Cialdini RB, JT Cacioppo, R Bassett, and JA Miller. (1978). “Low-Ball Procedure for Producing Compliance: Commitment Then Cost,” Journal of Personality and Social Psychology , 36, 463–476.

Cohen J. (1994). “The Earth is Round (p < 0.05),” American Psychologist , 49, 997–1003.

Coursol A, and EE Wagner. (1986), “Effect of Positive Findings on Submission and Acceptance Rates: A Note on Meta-analysis Bias,” Professional Psychology: Research and Practice , 17,(No. 2), 137.

Demsetz H. (1974). “Two Systems of Belief About Monopoly”. In H J Goldschmid, H M Mann, and J F Weston (eds.), Industrial Concentration: The New Learning . Boston: Little, Brown, pp. 164–184.

Dunbar K. (1993). “Concept Discovery in a Scientific Domain,” Cognitive Science , 17, 397–434.

Dunbar K. (1995). “How Scientists Really Reason: Scientific Reasoning in Real-world Laboratories.” In R J Sternberg and J E Davidson (eds.), The Nature of Insight . Cambridge, MA: MIT Press, pp. 365–395.

Elaad E, A Ginton, and G Ben-Shakhar. (1994). “The Effects of Prior expectations and Outcome Knowledge on Polygraph Examiners' Decisions,” Journal of Behavioral Decision Making , 7, 279–292.

Farris H, and R Revlin. (1989). “The Discovery Process: A Counterfactual Strategy,” Social Studies of Science , 19, 497–513.

Goldfarb RS. (1995). “The Economist-as-audience Needs a Methodology of Plausible Inference,” Journal of Economic Methodology , 2, 201–222.

Goodstein LD, and KL Brazis. (1970). “Credibility of Psychologists: An Empirical Study,” Psychological Reports , 27, 835–838.

Gorman ME, and ME Gorman. (1984), “A Comparison of Disconfirmatory, Confirmatory and Control Strategies on Wason's 2–4–6 Task,” The Quarterly Journal of Experimental Psychology , 36A, 629–648.

Greenwald AG, AR Pratkanis, MR Leippe, and MH Baumgardner. (1986). “Under What Conditions Does Theory Obstruct Progress?” Psychological Review , 93, 216–229.

Hogarth RM. (1978). “A Note on Aggregating Opinions,” Organizational Behavior and Human Performance , 21, 40–46.

Hubbard R, and JS Armstrong. (1994). “Replications and Extensions in Marketing: Rarely Published but Quite Contrary,” International Journal of Research in Marketing , 11, 233–248.

Hubbard R, and JS Armstrong. (1992). “Are Null Results Becoming an Endangered Species?” Marketing Letters , 3, 127–136.

Jones WH, and D Russell. (1980). “The Selective Processing of Belief Disconfirming Information,” European Journal of Social Psychology , 10, 309–312.

Klayman J, and Y Ha. (1987). “Confirmation, Disconfirmation, and Information in Hypothesis Testing,” Psychological Review , 94, 211–228.

Klayman J, and Y Ha. (1989). “Hypothesis Testing in Rule Discovery: Strategy, Structure, and Content,” Journal of Experimental Psychology , 15, 596–604.

Koehler JJ. (1993). “The Influence of Prior Beliefs on Scientific Judgements of Evidence Quality,” Organizational Behavior and Human Decision Processes , 56, 28–55.

Leone RP, and R Schultz. (1980). “A Study of Marketing Generalizations,” Journal of Marketing , 44, 10–18.

Libby R, and RK Blashfield. (1978). “Performance of a Composite as a Function of the Number of Judges,” Organizational Behavior and Human Performance , 21, 121–129.

Lord CG, L Ross, and MR Lepper. (1979). “Biased Assimilation and Attitude Polarization: The Effects of Prior Theories on Subsequently Considered Evidence,” Journal of Personality and Social Psychology , 37, 2098–2109.

Mahoney MJ. (1977). “Publication Prejudices: An Experimental Study of Confirmatory Bias in the Peer Review System,” Cognitive Therapy and Research , 1, 161–175.

McCloskey DN, and ST Ziliak. (1996). “The Standard Error of Regressions,” Journal of Economic Literature , 34, 97–114.

McDonald J. (1992). “Is Strong Inference Really Superior to Simple Inference,” Synthese , 92, 261–282.

McKenzie CRM. (1998). “Taking into Account the Strength of an Alternative Hypothesis,” Journal of Experimental Psychology , 24, 771–792.

Mitroff I. (1972). “The Myth of Objectivity, or, Why Science Needs a New Psychology of Science,” Management Science , 18, B613–B618.

Mynatt C, ME Doherty, and RD Tweney. (1978). “Consequences of Confirmation and Disconfirmation in a Simulated Research Environment,” Quarterly Journal of Experimental Psychology , 30, 395–406.

Platt JR. (1964). “Strong Inference,” Science , 146, 347–353.

Pollay RW. (1984). “Lydiametrics: Applications of Econometrics to the History of Advertising,” Journal of Advertising History , 1(2), 3–15.

Rodgers R, and JE Hunter. (1994). “The Discard of Study Evidence by Literature Reviewers,” Journal of Applied Behavioral Science , 30, 329–345.

Rust RT, DR Lehmann, and JU Farley. (1990). “Estimating the Publication Bias of Meta-Analysis,” Journal of Marketing Research , 27, 220–226.

Sawyer AG, and JP Peter. (1983). “The Significance of Statistical Significance Tests in Marketing Research,” Journal of Marketing Research , 20, 122–133.

Wason PC. (1960). “On the Failure to Eliminate Hypotheses in a Conceptual Task,” Quarterly Journal of Experimental Psychology , 12, 129–140.

Wason PC. (1968). “Reasoning About a Rule,” Quarterly Journal of Experimental Psychology , 20, 273–281.

Wells WD. (1993). “Discovery-oriented Consumer Research,” Journal of Consumer Research , 19, 489–504.

Download references

Author information

Authors and affiliations.

Wharton School, University of Pennsylvania, Philadelphia, PA, 19104

J. Scott Armstrong

Department of Marketing, University of Auckland, Auckland, New Zealand

Roderick J. Brodie & Andrew G. Parsons

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

About this article

Armstrong, J.S., Brodie, R.J. & Parsons, A.G. Hypotheses in Marketing Science: Literature Review and Publication Audit. Marketing Letters 12 , 171–187 (2001). https://doi.org/10.1023/A:1011169104290

Download citation

Issue Date : May 2001

DOI : https://doi.org/10.1023/A:1011169104290

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • competing hypotheses
  • dominant hypotheses
  • exploratory studies
  • marketing generalizations
  • multiple hypotheses
  • Find a journal
  • Publish with us
  • Track your research

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is secondary school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout secondary school will have lower rates of unplanned pregnancy than teenagers who did not receive any sex education. Secondary school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative correlation between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 23 September 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

hypothesis for marketing research

Home Market Research

Research Hypothesis: What It Is, Types + How to Develop?

A research hypothesis proposes a link between variables. Uncover its types and the secrets to creating hypotheses for scientific inquiry.

A research study starts with a question. Researchers worldwide ask questions and create research hypotheses. The effectiveness of research relies on developing a good research hypothesis. Examples of research hypotheses can guide researchers in writing effective ones.

In this blog, we’ll learn what a research hypothesis is, why it’s important in research, and the different types used in science. We’ll also guide you through creating your research hypothesis and discussing ways to test and evaluate it.

What is a Research Hypothesis?

A hypothesis is like a guess or idea that you suggest to check if it’s true. A research hypothesis is a statement that brings up a question and predicts what might happen.

It’s really important in the scientific method and is used in experiments to figure things out. Essentially, it’s an educated guess about how things are connected in the research.

A research hypothesis usually includes pointing out the independent variable (the thing they’re changing or studying) and the dependent variable (the result they’re measuring or watching). It helps plan how to gather and analyze data to see if there’s evidence to support or deny the expected connection between these variables.

Importance of Hypothesis in Research

Hypotheses are really important in research. They help design studies, allow for practical testing, and add to our scientific knowledge. Their main role is to organize research projects, making them purposeful, focused, and valuable to the scientific community. Let’s look at some key reasons why they matter:

  • A research hypothesis helps test theories.

A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior.

  • It serves as a great platform for investigation activities.

It serves as a launching pad for investigation activities, which offers researchers a clear starting point. A research hypothesis can explore the relationship between exercise and stress reduction.

  • Hypothesis guides the research work or study.

A well-formulated hypothesis guides the entire research process. It ensures that the study remains focused and purposeful. For instance, a hypothesis about the impact of social media on interpersonal relationships provides clear guidance for a study.

  • Hypothesis sometimes suggests theories.

In some cases, a hypothesis can suggest new theories or modifications to existing ones. For example, a hypothesis testing the effectiveness of a new drug might prompt a reconsideration of current medical theories.

  • It helps in knowing the data needs.

A hypothesis clarifies the data requirements for a study, ensuring that researchers collect the necessary information—a hypothesis guiding the collection of demographic data to analyze the influence of age on a particular phenomenon.

  • The hypothesis explains social phenomena.

Hypotheses are instrumental in explaining complex social phenomena. For instance, a hypothesis might explore the relationship between economic factors and crime rates in a given community.

  • Hypothesis provides a relationship between phenomena for empirical Testing.

Hypotheses establish clear relationships between phenomena, paving the way for empirical testing. An example could be a hypothesis exploring the correlation between sleep patterns and academic performance.

  • It helps in knowing the most suitable analysis technique.

A hypothesis guides researchers in selecting the most appropriate analysis techniques for their data. For example, a hypothesis focusing on the effectiveness of a teaching method may lead to the choice of statistical analyses best suited for educational research.

Characteristics of a Good Research Hypothesis

A hypothesis is a specific idea that you can test in a study. It often comes from looking at past research and theories. A good hypothesis usually starts with a research question that you can explore through background research. For it to be effective, consider these key characteristics:

  • Clear and Focused Language: A good hypothesis uses clear and focused language to avoid confusion and ensure everyone understands it.
  • Related to the Research Topic: The hypothesis should directly relate to the research topic, acting as a bridge between the specific question and the broader study.
  • Testable: An effective hypothesis can be tested, meaning its prediction can be checked with real data to support or challenge the proposed relationship.
  • Potential for Exploration: A good hypothesis often comes from a research question that invites further exploration. Doing background research helps find gaps and potential areas to investigate.
  • Includes Variables: The hypothesis should clearly state both the independent and dependent variables, specifying the factors being studied and the expected outcomes.
  • Ethical Considerations: Check if variables can be manipulated without breaking ethical standards. It’s crucial to maintain ethical research practices.
  • Predicts Outcomes: The hypothesis should predict the expected relationship and outcome, acting as a roadmap for the study and guiding data collection and analysis.
  • Simple and Concise: A good hypothesis avoids unnecessary complexity and is simple and concise, expressing the essence of the proposed relationship clearly.
  • Clear and Assumption-Free: The hypothesis should be clear and free from assumptions about the reader’s prior knowledge, ensuring universal understanding.
  • Observable and Testable Results: A strong hypothesis implies research that produces observable and testable results, making sure the study’s outcomes can be effectively measured and analyzed.

When you use these characteristics as a checklist, it can help you create a good research hypothesis. It’ll guide improving and strengthening the hypothesis, identifying any weaknesses, and making necessary changes. Crafting a hypothesis with these features helps you conduct a thorough and insightful research study.

Types of Research Hypotheses

The research hypothesis comes in various types, each serving a specific purpose in guiding the scientific investigation. Knowing the differences will make it easier for you to create your own hypothesis. Here’s an overview of the common types:

01. Null Hypothesis

The null hypothesis states that there is no connection between two considered variables or that two groups are unrelated. As discussed earlier, a hypothesis is an unproven assumption lacking sufficient supporting data. It serves as the statement researchers aim to disprove. It is testable, verifiable, and can be rejected.

For example, if you’re studying the relationship between Project A and Project B, assuming both projects are of equal standard is your null hypothesis. It needs to be specific for your study.

02. Alternative Hypothesis

The alternative hypothesis is basically another option to the null hypothesis. It involves looking for a significant change or alternative that could lead you to reject the null hypothesis. It’s a different idea compared to the null hypothesis.

When you create a null hypothesis, you’re making an educated guess about whether something is true or if there’s a connection between that thing and another variable. If the null view suggests something is correct, the alternative hypothesis says it’s incorrect. 

For instance, if your null hypothesis is “I’m going to be $1000 richer,” the alternative hypothesis would be “I’m not going to get $1000 or be richer.”

03. Directional Hypothesis

The directional hypothesis predicts the direction of the relationship between independent and dependent variables. They specify whether the effect will be positive or negative.

If you increase your study hours, you will experience a positive association with your exam scores. This hypothesis suggests that as you increase the independent variable (study hours), there will also be an increase in the dependent variable (exam scores).

04. Non-directional Hypothesis

The non-directional hypothesis predicts the existence of a relationship between variables but does not specify the direction of the effect. It suggests that there will be a significant difference or relationship, but it does not predict the nature of that difference.

For example, you will find no notable difference in test scores between students who receive the educational intervention and those who do not. However, once you compare the test scores of the two groups, you will notice an important difference.

05. Simple Hypothesis

A simple hypothesis predicts a relationship between one dependent variable and one independent variable without specifying the nature of that relationship. It’s simple and usually used when we don’t know much about how the two things are connected.

For example, if you adopt effective study habits, you will achieve higher exam scores than those with poor study habits.

06. Complex Hypothesis

A complex hypothesis is an idea that specifies a relationship between multiple independent and dependent variables. It is a more detailed idea than a simple hypothesis.

While a simple view suggests a straightforward cause-and-effect relationship between two things, a complex hypothesis involves many factors and how they’re connected to each other.

For example, when you increase your study time, you tend to achieve higher exam scores. The connection between your study time and exam performance is affected by various factors, including the quality of your sleep, your motivation levels, and the effectiveness of your study techniques.

If you sleep well, stay highly motivated, and use effective study strategies, you may observe a more robust positive correlation between the time you spend studying and your exam scores, unlike those who may lack these factors.

07. Associative Hypothesis

An associative hypothesis proposes a connection between two things without saying that one causes the other. Basically, it suggests that when one thing changes, the other changes too, but it doesn’t claim that one thing is causing the change in the other.

For example, you will likely notice higher exam scores when you increase your study time. You can recognize an association between your study time and exam scores in this scenario.

Your hypothesis acknowledges a relationship between the two variables—your study time and exam scores—without asserting that increased study time directly causes higher exam scores. You need to consider that other factors, like motivation or learning style, could affect the observed association.

08. Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between two variables. It suggests that changes in one variable directly cause changes in another variable.

For example, when you increase your study time, you experience higher exam scores. This hypothesis suggests a direct cause-and-effect relationship, indicating that the more time you spend studying, the higher your exam scores. It assumes that changes in your study time directly influence changes in your exam performance.

09. Empirical Hypothesis

An empirical hypothesis is a statement based on things we can see and measure. It comes from direct observation or experiments and can be tested with real-world evidence. If an experiment proves a theory, it supports the idea and shows it’s not just a guess. This makes the statement more reliable than a wild guess.

For example, if you increase the dosage of a certain medication, you might observe a quicker recovery time for patients. Imagine you’re in charge of a clinical trial. In this trial, patients are given varying dosages of the medication, and you measure and compare their recovery times. This allows you to directly see the effects of different dosages on how fast patients recover.

This way, you can create a research hypothesis: “Increasing the dosage of a certain medication will lead to a faster recovery time for patients.”

10. Statistical Hypothesis

A statistical hypothesis is a statement or assumption about a population parameter that is the subject of an investigation. It serves as the basis for statistical analysis and testing. It is often tested using statistical methods to draw inferences about the larger population.

In a hypothesis test, statistical evidence is collected to either reject the null hypothesis in favor of the alternative hypothesis or fail to reject the null hypothesis due to insufficient evidence.

For example, let’s say you’re testing a new medicine. Your hypothesis could be that the medicine doesn’t really help patients get better. So, you collect data and use statistics to see if your guess is right or if the medicine actually makes a difference.

If the data strongly shows that the medicine does help, you say your guess was wrong, and the medicine does make a difference. But if the proof isn’t strong enough, you can stick with your original guess because you didn’t get enough evidence to change your mind.

How to Develop a Research Hypotheses?

Step 1: identify your research problem or topic..

Define the area of interest or the problem you want to investigate. Make sure it’s clear and well-defined.

Start by asking a question about your chosen topic. Consider the limitations of your research and create a straightforward problem related to your topic. Once you’ve done that, you can develop and test a hypothesis with evidence.

Step 2: Conduct a literature review

Review existing literature related to your research problem. This will help you understand the current state of knowledge in the field, identify gaps, and build a foundation for your hypothesis. Consider the following questions:

  • What existing research has been conducted on your chosen topic?
  • Are there any gaps or unanswered questions in the current literature?
  • How will the existing literature contribute to the foundation of your research?

Step 3: Formulate your research question

Based on your literature review, create a specific and concise research question that addresses your identified problem. Your research question should be clear, focused, and relevant to your field of study.

Step 4: Identify variables

Determine the key variables involved in your research question. Variables are the factors or phenomena that you will study and manipulate to test your hypothesis.

  • Independent Variable: The variable you manipulate or control.
  • Dependent Variable: The variable you measure to observe the effect of the independent variable.

Step 5: State the Null hypothesis

The null hypothesis is a statement that there is no significant difference or effect. It serves as a baseline for comparison with the alternative hypothesis.

Step 6: Select appropriate methods for testing the hypothesis

Choose research methods that align with your study objectives, such as experiments, surveys, or observational studies. The selected methods enable you to test your research hypothesis effectively.

Creating a research hypothesis usually takes more than one try. Expect to make changes as you collect data. It’s normal to test and say no to a few hypotheses before you find the right answer to your research question.

Testing and Evaluating Hypotheses

Testing hypotheses is a really important part of research. It’s like the practical side of things. Here, real-world evidence will help you determine how different things are connected. Let’s explore the main steps in hypothesis testing:

  • State your research hypothesis.

Before testing, clearly articulate your research hypothesis. This involves framing both a null hypothesis, suggesting no significant effect or relationship, and an alternative hypothesis, proposing the expected outcome.

  • Collect data strategically.

Plan how you will gather information in a way that fits your study. Make sure your data collection method matches the things you’re studying.

Whether through surveys, observations, or experiments, this step demands precision and adherence to the established methodology. The quality of data collected directly influences the credibility of study outcomes.

  • Perform an appropriate statistical test.

Choose a statistical test that aligns with the nature of your data and the hypotheses being tested. Whether it’s a t-test, chi-square test, ANOVA, or regression analysis, selecting the right statistical tool is paramount for accurate and reliable results.

  • Decide if your idea was right or wrong.

Following the statistical analysis, evaluate the results in the context of your null hypothesis. You need to decide if you should reject your null hypothesis or not.

  • Share what you found.

When discussing what you found in your research, be clear and organized. Say whether your idea was supported or not, and talk about what your results mean. Also, mention any limits to your study and suggest ideas for future research.

The Role of QuestionPro to Develop a Good Research Hypothesis

QuestionPro is a survey and research platform that provides tools for creating, distributing, and analyzing surveys. It plays a crucial role in the research process, especially when you’re in the initial stages of hypothesis development. Here’s how QuestionPro can help you to develop a good research hypothesis:

  • Survey design and data collection: You can use the platform to create targeted questions that help you gather relevant data.
  • Exploratory research: Through surveys and feedback mechanisms on QuestionPro, you can conduct exploratory research to understand the landscape of a particular subject.
  • Literature review and background research: QuestionPro surveys can collect sample population opinions, experiences, and preferences. This data and a thorough literature evaluation can help you generate a well-grounded hypothesis by improving your research knowledge.
  • Identifying variables: Using targeted survey questions, you can identify relevant variables related to their research topic.
  • Testing assumptions: You can use surveys to informally test certain assumptions or hypotheses before formalizing a research hypothesis.
  • Data analysis tools: QuestionPro provides tools for analyzing survey data. You can use these tools to identify the collected data’s patterns, correlations, or trends.
  • Refining your hypotheses: As you collect data through QuestionPro, you can adjust your hypotheses based on the real-world responses you receive.

A research hypothesis is like a guide for researchers in science. It’s a well-thought-out idea that has been thoroughly tested. This idea is crucial as researchers can explore different fields, such as medicine, social sciences, and natural sciences. The research hypothesis links theories to real-world evidence and gives researchers a clear path to explore and make discoveries.

QuestionPro Research Suite is a helpful tool for researchers. It makes creating surveys, collecting data, and analyzing information easily. It supports all kinds of research, from exploring new ideas to forming hypotheses. With a focus on using data, it helps researchers do their best work.

Are you interested in learning more about QuestionPro Research Suite? Take advantage of QuestionPro’s free trial to get an initial look at its capabilities and realize the full potential of your research efforts.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

data security

Data Security: What it is, Types, Risk & Strategies to Follow

Sep 25, 2024

user behavior

User Behavior: What it is, How to Understand, Track & Uses

Sep 24, 2024

hypothesis for marketing research

Mass Personalization is not Personalization! — Tuesday CX Thoughts

change management questions

Change Management Questions: How to Design & Ask Questions

Sep 23, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

hypothesis for marketing research

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

hypothesis for marketing research

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

hypothesis for marketing research

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

hypothesis for marketing research

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Editage Plus

Editage Plus: Tools and Pricing

peer review

Understanding the Peer Review Process (Step-by-Step) 

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

hypothesis for marketing research

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Creating Brand Value
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

A Beginner’s Guide to Hypothesis Testing in Business

Business professionals performing hypothesis testing

  • 30 Mar 2021

Becoming a more data-driven decision-maker can bring several benefits to your organization, enabling you to identify new opportunities to pursue and threats to abate. Rather than allowing subjective thinking to guide your business strategy, backing your decisions with data can empower your company to become more innovative and, ultimately, profitable.

If you’re new to data-driven decision-making, you might be wondering how data translates into business strategy. The answer lies in generating a hypothesis and verifying or rejecting it based on what various forms of data tell you.

Below is a look at hypothesis testing and the role it plays in helping businesses become more data-driven.

Access your free e-book today.

What Is Hypothesis Testing?

To understand what hypothesis testing is, it’s important first to understand what a hypothesis is.

A hypothesis or hypothesis statement seeks to explain why something has happened, or what might happen, under certain conditions. It can also be used to understand how different variables relate to each other. Hypotheses are often written as if-then statements; for example, “If this happens, then this will happen.”

Hypothesis testing , then, is a statistical means of testing an assumption stated in a hypothesis. While the specific methodology leveraged depends on the nature of the hypothesis and data available, hypothesis testing typically uses sample data to extrapolate insights about a larger population.

Hypothesis Testing in Business

When it comes to data-driven decision-making, there’s a certain amount of risk that can mislead a professional. This could be due to flawed thinking or observations, incomplete or inaccurate data , or the presence of unknown variables. The danger in this is that, if major strategic decisions are made based on flawed insights, it can lead to wasted resources, missed opportunities, and catastrophic outcomes.

The real value of hypothesis testing in business is that it allows professionals to test their theories and assumptions before putting them into action. This essentially allows an organization to verify its analysis is correct before committing resources to implement a broader strategy.

As one example, consider a company that wishes to launch a new marketing campaign to revitalize sales during a slow period. Doing so could be an incredibly expensive endeavor, depending on the campaign’s size and complexity. The company, therefore, may wish to test the campaign on a smaller scale to understand how it will perform.

In this example, the hypothesis that’s being tested would fall along the lines of: “If the company launches a new marketing campaign, then it will translate into an increase in sales.” It may even be possible to quantify how much of a lift in sales the company expects to see from the effort. Pending the results of the pilot campaign, the business would then know whether it makes sense to roll it out more broadly.

Related: 9 Fundamental Data Science Skills for Business Professionals

Key Considerations for Hypothesis Testing

1. alternative hypothesis and null hypothesis.

In hypothesis testing, the hypothesis that’s being tested is known as the alternative hypothesis . Often, it’s expressed as a correlation or statistical relationship between variables. The null hypothesis , on the other hand, is a statement that’s meant to show there’s no statistical relationship between the variables being tested. It’s typically the exact opposite of whatever is stated in the alternative hypothesis.

For example, consider a company’s leadership team that historically and reliably sees $12 million in monthly revenue. They want to understand if reducing the price of their services will attract more customers and, in turn, increase revenue.

In this case, the alternative hypothesis may take the form of a statement such as: “If we reduce the price of our flagship service by five percent, then we’ll see an increase in sales and realize revenues greater than $12 million in the next month.”

The null hypothesis, on the other hand, would indicate that revenues wouldn’t increase from the base of $12 million, or might even decrease.

Check out the video below about the difference between an alternative and a null hypothesis, and subscribe to our YouTube channel for more explainer content.

2. Significance Level and P-Value

Statistically speaking, if you were to run the same scenario 100 times, you’d likely receive somewhat different results each time. If you were to plot these results in a distribution plot, you’d see the most likely outcome is at the tallest point in the graph, with less likely outcomes falling to the right and left of that point.

distribution plot graph

With this in mind, imagine you’ve completed your hypothesis test and have your results, which indicate there may be a correlation between the variables you were testing. To understand your results' significance, you’ll need to identify a p-value for the test, which helps note how confident you are in the test results.

In statistics, the p-value depicts the probability that, assuming the null hypothesis is correct, you might still observe results that are at least as extreme as the results of your hypothesis test. The smaller the p-value, the more likely the alternative hypothesis is correct, and the greater the significance of your results.

3. One-Sided vs. Two-Sided Testing

When it’s time to test your hypothesis, it’s important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests , or one-tailed and two-tailed tests, respectively.

Typically, you’d leverage a one-sided test when you have a strong conviction about the direction of change you expect to see due to your hypothesis test. You’d leverage a two-sided test when you’re less confident in the direction of change.

Business Analytics | Become a data-driven leader | Learn More

4. Sampling

To perform hypothesis testing in the first place, you need to collect a sample of data to be analyzed. Depending on the question you’re seeking to answer or investigate, you might collect samples through surveys, observational studies, or experiments.

A survey involves asking a series of questions to a random population sample and recording self-reported responses.

Observational studies involve a researcher observing a sample population and collecting data as it occurs naturally, without intervention.

Finally, an experiment involves dividing a sample into multiple groups, one of which acts as the control group. For each non-control group, the variable being studied is manipulated to determine how the data collected differs from that of the control group.

A Beginner's Guide to Data and Analytics | Access Your Free E-Book | Download Now

Learn How to Perform Hypothesis Testing

Hypothesis testing is a complex process involving different moving pieces that can allow an organization to effectively leverage its data and inform strategic decisions.

If you’re interested in better understanding hypothesis testing and the role it can play within your organization, one option is to complete a course that focuses on the process. Doing so can lay the statistical and analytical foundation you need to succeed.

Do you want to learn more about hypothesis testing? Explore Business Analytics —one of our online business essentials courses —and download our Beginner’s Guide to Data & Analytics .

hypothesis for marketing research

About the Author

Marketing91

What is a Research Hypothesis And How to Write it?

June 12, 2023 | By Hitesh Bhasin | Filed Under: Marketing

A research hypothesis can be defined as a clear, specific and predictive statement that states the possible outcome of a scientific study. The result of the research study is based on previous research studies and can be tested by scientific research.

The research hypothesis is written before the beginning of any scientific research or data collection .

Table of Contents

What is Research Hypothesis?

The research hypothesis is the first step and basis of all research endeavours. The research hypothesis shows what you want to prove with your research study. Therefore, the research hypothesis should be written first before you begin the study, no matter what kind of research study you are conducting.

The research hypothesis shows the direction to the researcher conducting the research. It states what the researcher expects to find from the study. It is a tentative answer that guides the entire research study.

Writing a research hypothesis is not an easy task. It requires skills to write a testable research hypothesis. The researcher is required to study the research done by other researchers on the same subject and find out the loopholes in those researches to make it the basis for their research.

Make sure to consider the general research question posed in the study before jumping directly to write a research hypothesis. Pointing out the exact question can be very difficult for researchers as most researchers are usually not aware of what they are trying to find from their research study. Moreover, the added excitement to conduct the study makes it even more difficult for the researchers to pin down the exact research hypothesis.

There are two primary criteria to develop a reasonable research hypothesis. First, the research hypothesis should be researchable and second; it must be interesting. By researchable, we mean that the question in the research hypothesis statement should be able to be answered with the help of science and the answer to the question should be answerable within a reasonable period.

The research hypothesis being interesting means that the research question should be valuable in the context of the ongoing scientific research of the topic.

Let us learn about the research hypothesis in quantitative and qualitative studies:

Research hypothesis in Quantitative studies

The research hypothesis in a quantitative study consists of one independent variable and one dependent variable, and the research hypothesis mentions the expected relationship between both of the variables.

The independent variable is mentioned first in the research hypothesis followed by explanations and results, etc. and then the dependent variable is specified. Make sure that the variables are referred to in the same order as they are mentioned in the research hypothesis; otherwise, there are chances that your readers get confused while reading your research proposal .

When both variables are used in continuous nature, then it is easy to describe negative or positive relationships between both of them. In the case of categorical variables, the hypothesis statement about which category of independent variables is associated with which group of dependent variables.

It is good to represent the research hypothesis in directional format. That means, the statement is made about the expected relationship between the variables based on past research, the study of existing research, on an educational guess , or only by observation.

Additionally, the null hypothesis can also be used between two variables which state that there is no relationship between the variables. The null hypothesis is the basis of all types of statistical research.

Lastly, a simple research hypothesis for quantitative research should provide a direction for the study of the relationship between two variables. Still, it should also use phrases like “tend to” or “in general” to soften the tone of the hypothesis.

Research hypothesis in qualitative research

The role of the research hypothesis in qualitative research is different as compared to its role in quantitative research. The research hypothesis is not developed at the beginning of the research because of the inductive nature of the qualitative studies.

The research hypothesis is introduced during the iterative process of data collection and the Interpretation of the data. The research hypothesis helps the researchers ask more questions and look for answers for disconfirming evidence.

The qualitative study is dependent on the questions and subquestions asked by the researchers at the beginning of the qualitative research. Generally, in qualitative studies one or two central questions are developed and based on these central questions a series of five to ten subquestions is built and these sub-questions are further used to develop central questions for the research purpose.

In qualitative studies, these questions are directly asked the participant of the research study usually through focus groups or in-depth interviews. This is done to develop an understanding between participants of the study and the researchers. This helps in creating a collaborative experience between the two.

Variables in hypothesis

In research studies like correlational research and experimental studies, a hypothesis shows a relationship between two or more variables. There is an independent variable and a dependent variable.

An independent variable is a variable that a researcher can control and change, whereas, a dependent variable is a variable that the researcher measures and observes.

For example, regular exercise lowers the chances of a heart attack. In this example, the regular exercise is an independent variable and probabilities of occurrence of heart attack is a dependent variable that researchers can measure by observation.

How to develop a reasonable research hypothesis?

How to develop a reasonable research hypothesis

A research hypothesis plays an essential role in the research study. Therefore, it is necessary to develop an accurate and precise research hypothesis. In this section, you will learn how to develop a reasonable research hypothesis. The following are the steps involved in developing a research hypothesis.

Step 1. Have a question?

The first step involved in writing a research hypothesis is having a question that you want to answer. This question should be specific and within the scope of your research area. Make sure that the question that you ask is researchable within the time duration of your research study. The examples of research hypothesis questions can be

  • Do students who attend classes regularly score more in exams?
  • Do people prefer to buy products that have a high price as compared to the other similar products available in the market ?

Step 2. Do some preliminary research:

Preliminary research is conducted before a researcher decides his research hypothesis. In the preliminary research, all the knowledge available about the question is collected by studying the theories and previous studies.

Having this knowledge helps the researchers to form educational assumptions about the outcomes of the research. At this stage, the researcher might prepare a conceptual framework to determine which variable should be studied and what you think is the relationship between the different variables.

The preliminary study also helps the researcher to change the topic if he feels the problem doesn’t have much scope for research.

Step 3. Formulation of hypothesis:

At this stage, the final research hypothesis is formulated. At this stage, the researcher has some idea of what he should expect from the research study. Write the answer to the question of research hypothesis in concise and clear sentences.

The clearer the research hypothesis, the easier will be for researchers to conduct the research.

Step 4. Refine the final hypothesis:

It is essential to make sure that your research hypothesis is testable and specific. You can define a hypothesis in different ways, but you should make sure that all the words that you use in your research hypothesis have precise definitions.

Besides, your hypothesis should contain a set of variables, the relationship between the variables, specific group being studied, and already predicted the outcome of the research.

Step 5. Use three methods to phrase your hypothesis:

They establish a clear relationship between variables, write the hypothesis in if.. then form. The first part of the sentence should be an independent variable, and the second part of the variable should state the dependent variable.

For example, if a student attends 100% classes in a semester, then he will score more than 90% in the exams.

In academic research, the research hypotheses are formed in terms of correlations or effects. In such hypotheses, the relationship between the variables is directly stated in the research hypothesis.

For example, the high numbers of lectures attended by students have a positive impact on their results.

When you are writing a research hypothesis to compare two groups, the hypothesis should state what the differences you are expecting to find in both the groups are.

For example, the students who have more than 70% attendance will score better in exams than the students who have lower than 50% attendance.

Step 6. Write the Null hypothesis:

A null hypothesis is written when research involves statistical hypothesis testing. A null hypothesis when there is no specific relationship between the variables.

It is a default position that shows that two variables used in the hypothesis are not related to each other. A null hypothesis is usually written as H0, and alternative hypotheses are written as H1 or Ha.

Importance of Research Hypothesis

Research plays an essential role in every field. To experiment, a researcher needs to make sure that the research he wants to conduct is testable. A research hypothesis is developed after conducting a preliminary study.

A preliminary study is the study of previous studies done by researchers and the study of research papers written on the same concept. With the help of the research hypothesis, a researcher makes sure that he is not hidden towards a dead end, and it works as a direction map for the researcher.

Liked this post? Check out the complete series on Market research

Related posts:

  • How to Write Research Proposal? Research Proposal Format
  • What are the Research Objectives? Types, Examples & How to Write Them
  • How to write a Research Question? Types and Tips
  • What is a Research Statement and How to Write it
  • What is Research Design? Type of Research Designs
  • 7 Key Differences between Research Method and Research Methodology
  • Qualitative Research: Meaning, and Features of Qualitative Research
  • Research Ethics – Importance and Principles of Ethics in Research
  • What Are Concept Statements? How To Write A Concept Statement?
  • Sales Copy: What it is and How to Write Effective Sales Copy

' src=

About Hitesh Bhasin

Hitesh Bhasin is the CEO of Marketing91 and has over a decade of experience in the marketing field. He is an accomplished author of thousands of insightful articles, including in-depth analyses of brands and companies. Holding an MBA in Marketing, Hitesh manages several offline ventures, where he applies all the concepts of Marketing that he writes about.

All Knowledge Banks (Hub Pages)

  • Marketing Hub
  • Management Hub
  • Marketing Strategy
  • Advertising Hub
  • Branding Hub
  • Market Research
  • Small Business Marketing
  • Sales and Selling
  • Marketing Careers
  • Internet Marketing
  • Business Model of Brands
  • Marketing Mix of Brands
  • Brand Competitors
  • Strategy of Brands
  • SWOT of Brands
  • Customer Management
  • Top 10 Lists

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Marketing91

  • About Marketing91
  • Marketing91 Team
  • Privacy Policy
  • Cookie Policy
  • Terms of Use
  • Editorial Policy

WE WRITE ON

  • Digital Marketing
  • Human Resources
  • Operations Management
  • Marketing News
  • Marketing mix's
  • Competitors

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

IMAGES

  1. Expert Advice on Developing a Hypothesis for Marketing Experimentation

    hypothesis for marketing research

  2. Marketing Research Hypothesis Examples : Research questions hypotheses

    hypothesis for marketing research

  3. How to write a hypothesis for marketing experimentation

    hypothesis for marketing research

  4. A/B Testing in Digital Marketing: Example of four-step hypothesis

    hypothesis for marketing research

  5. Marketing Research Hypothesis Outline Template in Word, PDF, Google

    hypothesis for marketing research

  6. Marketing Research Hypothesis Examples

    hypothesis for marketing research

VIDEO

  1. Hypothesis and Assumption#research

  2. Concept of Hypothesis

  3. Hypothesis in educational research guess 👍#hypothesis #quiz #research #foryou #sst #exampreparation

  4. lesson 9 research hypothesis conditions in stating the research hypothesis

  5. What is Hypothesis in Research Methodology?

  6. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

COMMENTS

  1. How to write a hypothesis for marketing experimentation

    The original idea: "My page needs a new CTA.". Following the hypothesis structure: "A new CTA on my page will increase [conversion goal]". The first test implied a problem with clarity, provides a potential theme: "Improving the clarity of the page will reduce confusion and improve [conversion goal].".

  2. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Simple hypothesis. A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, "Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking. 4.

  3. Expert Advice on Developing a Hypothesis for Marketing Experimentation

    The Basics: Marketing Experimentation Hypothesis. A hypothesis is a research-based statement that aims to explain an observed trend and create a solution that will improve the result. This statement is an educated, testable prediction about what will happen. It has to be stated in declarative form and not as a question.

  4. 9 Key Stages in the Marketing Research Process

    The marketing research process - an overview. A typical marketing research process is as follows: Identify an issue, discuss alternatives and set out research objectives. Develop a research program. Choose a sample. Gather information. Gather data. Organize and analyze information and data. Present findings.

  5. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  6. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  7. Marketing Experiments: From Hypothesis to Results

    Hypothesis-driven approach. A marketing experiment should be based on a well-formulated hypothesis that predicts the expected outcome. A reasonable hypothesis is specific, testable, and grounded in existing knowledge or data. It serves as the foundation for experimental design and helps businesses focus on the most relevant variables and outcomes.

  8. Hypothesis Testing in Marketing Research

    Hypothesis testing is a valuable tool in marketing research for making data-driven decisions and evaluating the effectiveness of marketing strategies. By formulating hypotheses, analyzing data, and interpreting results, businesses can gain insights into consumer behavior, assess marketing initiatives, and optimize strategies.

  9. Designing Hypotheses that Win: A four-step framework for gaining

    A/B Testing Summit free online conference - Research your seat to see Flint McGlaughlin's keynote Design Hypotheses that Win: A 4-step framework for gaining customer wisdom and generating significant results. The Hypothesis and the Modern-Day Marketer. Customer Theory: How we learned from a previous test to drive a 40% increase in CTR

  10. Tips to Create and Test a Value Hypothesis: A Step-by-Step Guide

    Before formulating a hypothesis, you need a deep understanding of your market and potential customers. You're looking to uncover their pain points and needs which your product aims to address. Begin with thorough market research and collect customer feedback to ensure your idea is built upon a solid foundation of real-world insights.

  11. The Hypothesis and the Modern-Day Marketer

    Before creating a hypothesis, the scientists at MECLABS Institute use this Discovery Triad to complete the following steps for all of our Research Partners: We uncover the business objective (or business question) driving the effort. Typically, we find two patterns regarding the business objective. First, it is broader in scope than a research ...

  12. Step-by-Step Guide: How to Craft a Strong Research Hypothesis

    Hypotheses in research need to satisfy specific criteria to be considered scientifically rigorous. Here are the most notable qualities of a strong hypothesis: Testability: Ensure the hypothesis allows you to work towards observable and testable results. Brevity and objectivity: Present your hypothesis as a brief statement and avoid wordiness.

  13. A/B Testing: Example of a good hypothesis

    For example: Problem Statement: "The lead generation form is too long, causing unnecessary friction.". Hypothesis: "By changing the amount of form fields from 20 to 10, we will increase number of leads.". Proposed solution. When you are thinking about the solution you want to implement, you need to think about the psychology of the ...

  14. Hypotheses in Marketing Science: Literature Review and ...

    We examined three approaches to research in marketing: exploratory hypotheses, dominant hypothesis, and competing hypotheses. Our review of empirical studies on scientific methodology suggests that the use of a single dominant hypothesis lacks objectivity relative to the use of exploratory and competing hypotheses approaches. We then conducted a publication audit of over 1,700 empirical papers ...

  15. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  16. Research Hypothesis: What It Is, Types + How to Develop?

    A research hypothesis helps test theories. A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior. It serves as a great platform for investigation activities.

  17. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  18. A Beginner's Guide to Hypothesis Testing in Business

    3. One-Sided vs. Two-Sided Testing. When it's time to test your hypothesis, it's important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests, or one-tailed and two-tailed tests, respectively. Typically, you'd leverage a one-sided test when you have a strong conviction ...

  19. What is a Research Hypothesis And How to Write it?

    The research hypothesis shows the direction to the researcher conducting the research. It states what the researcher expects to find from the study. It is a tentative answer that guides the entire research study. Writing a research hypothesis is not an easy task. It requires skills to write a testable research hypothesis.

  20. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  21. Global Consumer Insights Agency

    Hypothesis Group is a consumer insights and strategy agency. We use full-service market research, strategy, and design to help brands do amazing things. Let's work together.