What Are The Steps Of The Scientific Method?

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Science is not just knowledge. It is also a method for obtaining knowledge. Scientific understanding is organized into theories.

The scientific method is a step-by-step process used by researchers and scientists to determine if there is a relationship between two or more variables. Psychologists use this method to conduct psychological research, gather data, process information, and describe behaviors.

It involves careful observation, asking questions, formulating hypotheses, experimental testing, and refining hypotheses based on experimental findings.

How it is Used

The scientific method can be applied broadly in science across many different fields, such as chemistry, physics, geology, and psychology. In a typical application of this process, a researcher will develop a hypothesis, test this hypothesis, and then modify the hypothesis based on the outcomes of the experiment.

The process is then repeated with the modified hypothesis until the results align with the observed phenomena. Detailed steps of the scientific method are described below.

Keep in mind that the scientific method does not have to follow this fixed sequence of steps; rather, these steps represent a set of general principles or guidelines.

7 Steps of the Scientific Method

Psychology uses an empirical approach.

Empiricism (founded by John Locke) states that the only source of knowledge comes through our senses – e.g., sight, hearing, touch, etc.

Empirical evidence does not rely on argument or belief. Thus, empiricism is the view that all knowledge is based on or may come from direct observation and experience.

The empiricist approach of gaining knowledge through experience quickly became the scientific approach and greatly influenced the development of physics and chemistry in the 17th and 18th centuries.

Steps of the Scientific Method

Step 1: Make an Observation (Theory Construction)

Every researcher starts at the very beginning. Before diving in and exploring something, one must first determine what they will study – it seems simple enough!

By making observations, researchers can establish an area of interest. Once this topic of study has been chosen, a researcher should review existing literature to gain insight into what has already been tested and determine what questions remain unanswered.

This assessment will provide helpful information about what has already been comprehended about the specific topic and what questions remain, and if one can go and answer them.

Specifically, a literature review might implicate examining a substantial amount of documented material from academic journals to books dating back decades. The most appropriate information gathered by the researcher will be shown in the introduction section or abstract of the published study results.

The background material and knowledge will help the researcher with the first significant step in conducting a psychology study, which is formulating a research question.

This is the inductive phase of the scientific process. Observations yield information that is used to formulate theories as explanations. A theory is a well-developed set of ideas that propose an explanation for observed phenomena.

Inductive reasoning moves from specific premises to a general conclusion. It starts with observations of phenomena in the natural world and derives a general law.

Step 2: Ask a Question

Once a researcher has made observations and conducted background research, the next step is to ask a scientific question. A scientific question must be defined, testable, and measurable.

A useful approach to develop a scientific question is: “What is the effect of…?” or “How does X affect Y?”

To answer an experimental question, a researcher must identify two variables: the independent and dependent variables.

The independent variable is the variable manipulated (the cause), and the dependent variable is the variable being measured (the effect).

An example of a research question could be, “Is handwriting or typing more effective for retaining information?” Answering the research question and proposing a relationship between the two variables is discussed in the next step.

Step 3: Form a Hypothesis (Make Predictions)

A hypothesis is an educated guess about the relationship between two or more variables. A hypothesis is an attempt to answer your research question based on prior observation and background research. Theories tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

For example, a researcher might ask about the connection between sleep and educational performance. Do students who get less sleep perform worse on tests at school?

It is crucial to think about different questions one might have about a particular topic to formulate a reasonable hypothesis. It would help if one also considered how one could investigate the causalities.

It is important that the hypothesis is both testable against reality and falsifiable. This means that it can be tested through an experiment and can be proven wrong.

The falsification principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory to be considered scientific, it must be able to be tested and conceivably proven false.

To test a hypothesis, we first assume that there is no difference between the populations from which the samples were taken. This is known as the null hypothesis and predicts that the independent variable will not influence the dependent variable.

Examples of “if…then…” Hypotheses:

  • If one gets less than 6 hours of sleep, then one will do worse on tests than if one obtains more rest.
  • If one drinks lots of water before going to bed, one will have to use the bathroom often at night.
  • If one practices exercising and lighting weights, then one’s body will begin to build muscle.

The research hypothesis is often called the alternative hypothesis and predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Although one could state and write a scientific hypothesis in many ways, hypotheses are usually built like “if…then…” statements.

Step 4: Run an Experiment (Gather Data)

The next step in the scientific method is to test your hypothesis and collect data. A researcher will design an experiment to test the hypothesis and gather data that will either support or refute the hypothesis.

The exact research methods used to examine a hypothesis depend on what is being studied. A psychologist might utilize two primary forms of research, experimental research, and descriptive research.

The scientific method is objective in that researchers do not let preconceived ideas or biases influence the collection of data and is systematic in that experiments are conducted in a logical way.

Experimental Research

Experimental research is used to investigate cause-and-effect associations between two or more variables. This type of research systematically controls an independent variable and measures its effect on a specified dependent variable.

Experimental research involves manipulating an independent variable and measuring the effect(s) on the dependent variable. Repeating the experiment multiple times is important to confirm that your results are accurate and consistent.

One of the significant advantages of this method is that it permits researchers to determine if changes in one variable cause shifts in each other.

While experiments in psychology typically have many moving parts (and can be relatively complex), an easy investigation is rather fundamental. Still, it does allow researchers to specify cause-and-effect associations between variables.

Most simple experiments use a control group, which involves those who do not receive the treatment, and an experimental group, which involves those who do receive the treatment.

An example of experimental research would be when a pharmaceutical company wants to test a new drug. They give one group a placebo (control group) and the other the actual pill (experimental group).

Descriptive Research

Descriptive research is generally used when it is challenging or even impossible to control the variables in question. Examples of descriptive analysis include naturalistic observation, case studies , and correlation studies .

One example of descriptive research includes phone surveys that marketers often use. While they typically do not allow researchers to identify cause and effect, correlational studies are quite common in psychology research. They make it possible to spot associations between distinct variables and measure the solidity of those relationships.

Step 5: Analyze the Data and Draw Conclusions

Once a researcher has designed and done the investigation and collected sufficient data, it is time to inspect this gathered information and judge what has been found. Researchers can summarize the data, interpret the results, and draw conclusions based on this evidence using analyses and statistics.

Upon completion of the experiment, you can collect your measurements and analyze the data using statistics. Based on the outcomes, you will either reject or confirm your hypothesis.

Analyze the Data

So, how does a researcher determine what the results of their study mean? Statistical analysis can either support or refute a researcher’s hypothesis and can also be used to determine if the conclusions are statistically significant.

When outcomes are said to be “statistically significant,” it is improbable that these results are due to luck or chance. Based on these observations, investigators must then determine what the results mean.

An experiment will support a hypothesis in some circumstances, but sometimes it fails to be truthful in other cases.

What occurs if the developments of a psychology investigation do not endorse the researcher’s hypothesis? It does mean that the study was worthless. Simply because the findings fail to defend the researcher’s hypothesis does not mean that the examination is not helpful or instructive.

This kind of research plays a vital role in supporting scientists in developing unexplored questions and hypotheses to investigate in the future. After decisions have been made, the next step is to communicate the results with the rest of the scientific community.

This is an integral part of the process because it contributes to the general knowledge base and can assist other scientists in finding new research routes to explore.

If the hypothesis is not supported, a researcher should acknowledge the experiment’s results, formulate a new hypothesis, and develop a new experiment.

We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist that could refute a theory.

Draw Conclusions and Interpret the Data

When the empirical observations disagree with the hypothesis, a number of possibilities must be considered. It might be that the theory is incorrect, in which case it needs altering, so it fully explains the data.

Alternatively, it might be that the hypothesis was poorly derived from the original theory, in which case the scientists were expecting the wrong thing to happen.

It might also be that the research was poorly conducted, or used an inappropriate method, or there were factors in play that the researchers did not consider. This will begin the process of the scientific method again.

If the hypothesis is supported, the researcher can find more evidence to support their hypothesis or look for counter-evidence to strengthen their hypothesis further.

In either scenario, the researcher should share their results with the greater scientific community.

Step 6: Share Your Results

One of the final stages of the research cycle involves the publication of the research. Once the report is written, the researcher(s) may submit the work for publication in an appropriate journal.

Usually, this is done by writing up a study description and publishing the article in a professional or academic journal. The studies and conclusions of psychological work can be seen in peer-reviewed journals such as  Developmental Psychology , Psychological Bulletin, the  Journal of Social Psychology, and numerous others.

Scientists should report their findings by writing up a description of their study and any subsequent findings. This enables other researchers to build upon the present research or replicate the results.

As outlined by the American Psychological Association (APA), there is a typical structure of a journal article that follows a specified format. In these articles, researchers:

  • Supply a brief narrative and background on previous research
  • Give their hypothesis
  • Specify who participated in the study and how they were chosen
  • Provide operational definitions for each variable
  • Explain the measures and methods used to collect data
  • Describe how the data collected was interpreted
  • Discuss what the outcomes mean

A detailed record of psychological studies and all scientific studies is vital to clearly explain the steps and procedures used throughout the study. So that other researchers can try this experiment too and replicate the results.

The editorial process utilized by academic and professional journals guarantees that each submitted article undergoes a thorough peer review to help assure that the study is scientifically sound. Once published, the investigation becomes another piece of the current puzzle of our knowledge “base” on that subject.

This last step is important because all results, whether they supported or did not support the hypothesis, can contribute to the scientific community. Publication of empirical observations leads to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular.

The editorial process utilized by academic and professional journals guarantees that each submitted article undergoes a thorough peer review to help assure that the study is scientifically sound.

Once published, the investigation becomes another piece of the current puzzle of our knowledge “base” on that subject.

By replicating studies, psychologists can reduce errors, validate theories, and gain a stronger understanding of a particular topic.

Step 7: Repeat the Scientific Method (Iteration)

Now, if one’s hypothesis turns out to be accurate, find more evidence or find counter-evidence. If one’s hypothesis is false, create a new hypothesis or try again.

One may wish to revise their first hypothesis to make a more niche experiment to design or a different specific question to test.

The amazingness of the scientific method is that it is a comprehensive and straightforward process that scientists, and everyone, can utilize over and over again.

So, draw conclusions and repeat because the scientific method is never-ending, and no result is ever considered perfect.

The scientific method is a process of:

  • Making an observation.
  • Forming a hypothesis.
  • Making a prediction.
  • Experimenting to test the hypothesis.

The procedure of repeating the scientific method is crucial to science and all fields of human knowledge.

Further Information

  • Karl Popper – Falsification
  • Thomas – Kuhn Paradigm Shift
  • Positivism in Sociology: Definition, Theory & Examples
  • Is Psychology a Science?
  • Psychology as a Science (PDF)

List the 6 steps of the scientific methods in order

  • Make an observation (theory construction)
  • Ask a question. A scientific question must be defined, testable, and measurable.
  • Form a hypothesis (make predictions)
  • Run an experiment to test the hypothesis (gather data)
  • Analyze the data and draw conclusions
  • Share your results so that other researchers can make new hypotheses

What is the first step of the scientific method?

The first step of the scientific method is making an observation. This involves noticing and describing a phenomenon or group of phenomena that one finds interesting and wishes to explain.

Observations can occur in a natural setting or within the confines of a laboratory. The key point is that the observation provides the initial question or problem that the rest of the scientific method seeks to answer or solve.

What is the scientific method?

The scientific method is a step-by-step process that investigators can follow to determine if there is a causal connection between two or more variables.

Psychologists and other scientists regularly suggest motivations for human behavior. On a more casual level, people judge other people’s intentions, incentives, and actions daily.

While our standard assessments of human behavior are subjective and anecdotal, researchers use the scientific method to study psychology objectively and systematically.

All utilize a scientific method to study distinct aspects of people’s thinking and behavior. This process allows scientists to analyze and understand various psychological phenomena, but it also provides investigators and others a way to disseminate and debate the results of their studies.

The outcomes of these studies are often noted in popular media, which leads numerous to think about how or why researchers came to the findings they did.

Why Use the Six Steps of the Scientific Method

The goal of scientists is to understand better the world that surrounds us. Scientific research is the most critical tool for navigating and learning about our complex world.

Without it, we would be compelled to rely solely on intuition, other people’s power, and luck. We can eliminate our preconceived concepts and superstitions through methodical scientific research and gain an objective sense of ourselves and our world.

All psychological studies aim to explain, predict, and even control or impact mental behaviors or processes. So, psychologists use and repeat the scientific method (and its six steps) to perform and record essential psychological research.

So, psychologists focus on understanding behavior and the cognitive (mental) and physiological (body) processes underlying behavior.

In the real world, people use to understand the behavior of others, such as intuition and personal experience. The hallmark of scientific research is evidence to support a claim.

Scientific knowledge is empirical, meaning it is grounded in objective, tangible evidence that can be observed repeatedly, regardless of who is watching.

The scientific method is crucial because it minimizes the impact of bias or prejudice on the experimenter. Regardless of how hard one tries, even the best-intentioned scientists can’t escape discrimination. can’t

It stems from personal opinions and cultural beliefs, meaning any mortal filters data based on one’s experience. Sadly, this “filtering” process can cause a scientist to favor one outcome over another.

For an everyday person trying to solve a minor issue at home or work, succumbing to these biases is not such a big deal; in fact, most times, it is important.

But in the scientific community, where results must be inspected and reproduced, bias or discrimination must be avoided.

When to Use the Six Steps of the Scientific Method ?

One can use the scientific method anytime, anywhere! From the smallest conundrum to solving global problems, it is a process that can be applied to any science and any investigation.

Even if you are not considered a “scientist,” you will be surprised to know that people of all disciplines use it for all kinds of dilemmas.

Try to catch yourself next time you come by a question and see how you subconsciously or consciously use the scientific method.

Print Friendly, PDF & Email

  • Science, Tech, Math ›
  • Chemistry ›
  • Scientific Method ›

Six Steps of the Scientific Method

Learn What Makes Each Stage Important

ThoughtCo. / Hugo Lin 

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

The scientific method is a systematic way of learning about the world around us. The key difference between the scientific method and other ways of acquiring knowledge is that, when using the scientific method, we make hypotheses and then test them with an experiment.

Anyone can use the scientific method to acquire knowledge by asking questions and then working to find the answers to those questions. Below are the six steps involved in the scientific method and variables you may encounter when working with this method.

The Six Steps

The number of steps in the scientific method can vary from one description to another (which mainly happens when data and analysis are separated into separate steps), however, below is a fairly standard list of the six steps you'll likely be expected to know for any science class:

  • Purpose/Question Ask a question.
  • Research Conduct background research. Write down your sources so you can cite your references. In the modern era, you might conduct much of your research online. As you read articles and papers online, ensure you scroll to the bottom of the text to check the author's references. Even if you can't access the full text of a published article, you can usually view the abstract to see the summary of other experiments . Interview experts on a topic. The more you know about a subject, the easier it'll be to conduct your investigation.
  • Hypothesis Propose a hypothesis . This is a sort of educated guess about what you expect your research to reveal. A hypothesis is a statement used to predict the outcome of an experiment. Usually, a hypothesis is written in terms of cause and effect. Alternatively, it may describe the relationship between two phenomena. The null hypothesis or the no-difference hypothesis is one type of hypothesis that's easy to test because it assumes changing a variable will not affect the outcome. In reality, you probably expect a change, but rejecting a hypothesis may be more useful than accepting one.
  • Experiment Design and experiment to test your hypothesis. An experiment has an independent and dependent variable. You change or control the independent variable and record the effect it has on the dependent variable . It's important to change only one variable for an experiment rather than try to combine the effects of variables in an experiment. For example, if you want to test the effects of light intensity and fertilizer concentration on the growth rate of a plant, you're looking at two separate experiments.
  • Data/Analysis Record observations and analyze the meaning of the data. Often, you'll prepare a table or graph of the data. Don't throw out data points you think are bad or that don't support your predictions. Some of the most incredible discoveries in science were made because the data looked wrong! Once you have the data, you may need to perform a mathematical analysis to support or refute your hypothesis.
  • Conclusion Conclude whether to accept or reject your hypothesis. There's no right or wrong outcome to an experiment, so either result is fine. Accepting a hypothesis doesn't necessarily mean it's correct! Sometimes repeating an experiment may give a different result. In other cases, a hypothesis may predict an outcome, yet you might draw an incorrect conclusion. Communicate your results. You can compile your results into a lab report or formally submit them as a paper . Whether you accept or reject the hypothesis, you likely learned something about the subject and may wish to revise the original hypothesis or form a new one for a future experiment.

When Are There Seven Steps?

Some teach the scientific method with seven steps instead of six. In the seven-step model, the first step is to make observations. Even if you don't make observations formally, you should think about prior experiences with a subject to ask a question or solve a problem.

Formal observations are a type of brainstorming that can help you find an idea and form a hypothesis. Observe your subject and record everything about it. Include colors, timing, sounds, temperatures, changes, behavior, and anything that strikes you as interesting or significant.

When you design an experiment, you're controlling and measuring variables. There are three types of variables:

  • Controlled Variables:  You can have as many  controlled variables  as you like. These are parts of the experiment that you try to keep constant throughout an experiment so they won't interfere with your test. Writing down controlled variables is a good idea because it helps make your experiment  reproducible , which is important in science! If you have trouble duplicating results from one experiment to another, there may be a controlled variable you missed.
  • Independent Variable:  This is the variable you control.
  • Dependent Variable:  This is the variable you measure. It's called the dependent variable because it  depends  on the independent variable.
  • Null Hypothesis Examples
  • Scientific Method Flow Chart
  • Random Error vs. Systematic Error
  • What Is an Experimental Constant?
  • Scientific Variable
  • What Is a Hypothesis? (Science)
  • What Are the Elements of a Good Hypothesis?
  • What Are Examples of a Hypothesis?
  • What Is a Testable Hypothesis?
  • Scientific Hypothesis Examples
  • Scientific Method Vocabulary Terms
  • Understanding Simple vs Controlled Experiments
  • The Role of a Controlled Variable in an Experiment
  • What Is the Difference Between a Control Variable and Control Group?
  • What Is a Controlled Experiment?
  • DRY MIX Experiment Variables Acronym
  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Thesis

Thesis – Structure, Example and Writing Guide

Thesis Statement

Thesis Statement – Examples, Writing Guide

Dissertation Methodology

Dissertation Methodology – Structure, Example...

Significance of the Study

Significance of the Study – Examples and Writing...

Table of Contents

Table of Contents – Types, Formats, Examples

Research Summary

Research Summary – Structure, Examples and...

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

in the scientific method a hypothesis is a what

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

in the scientific method a hypothesis is a what

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

science made simple logo

The Scientific Method by Science Made Simple

Understanding and using the scientific method.

The Scientific Method is a process used to design and perform experiments. It's important to minimize experimental errors and bias, and increase confidence in the accuracy of your results.

science experiment

In the previous sections, we talked about how to pick a good topic and specific question to investigate. Now we will discuss how to carry out your investigation.

Steps of the Scientific Method

  • Observation/Research
  • Experimentation

Now that you have settled on the question you want to ask, it's time to use the Scientific Method to design an experiment to answer that question.

If your experiment isn't designed well, you may not get the correct answer. You may not even get any definitive answer at all!

The Scientific Method is a logical and rational order of steps by which scientists come to conclusions about the world around them. The Scientific Method helps to organize thoughts and procedures so that scientists can be confident in the answers they find.

OBSERVATION is first step, so that you know how you want to go about your research.

HYPOTHESIS is the answer you think you'll find.

PREDICTION is your specific belief about the scientific idea: If my hypothesis is true, then I predict we will discover this.

EXPERIMENT is the tool that you invent to answer the question, and

CONCLUSION is the answer that the experiment gives.

Don't worry, it isn't that complicated. Let's take a closer look at each one of these steps. Then you can understand the tools scientists use for their science experiments, and use them for your own.

OBSERVATION

observation  magnifying glass

This step could also be called "research." It is the first stage in understanding the problem.

After you decide on topic, and narrow it down to a specific question, you will need to research everything that you can find about it. You can collect information from your own experiences, books, the internet, or even smaller "unofficial" experiments.

Let's continue the example of a science fair idea about tomatoes in the garden. You like to garden, and notice that some tomatoes are bigger than others and wonder why.

Because of this personal experience and an interest in the problem, you decide to learn more about what makes plants grow.

For this stage of the Scientific Method, it's important to use as many sources as you can find. The more information you have on your science fair topic, the better the design of your experiment is going to be, and the better your science fair project is going to be overall.

Also try to get information from your teachers or librarians, or professionals who know something about your science fair project. They can help to guide you to a solid experimental setup.

research science fair topic

The next stage of the Scientific Method is known as the "hypothesis." This word basically means "a possible solution to a problem, based on knowledge and research."

The hypothesis is a simple statement that defines what you think the outcome of your experiment will be.

All of the first stage of the Scientific Method -- the observation, or research stage -- is designed to help you express a problem in a single question ("Does the amount of sunlight in a garden affect tomato size?") and propose an answer to the question based on what you know. The experiment that you will design is done to test the hypothesis.

Using the example of the tomato experiment, here is an example of a hypothesis:

TOPIC: "Does the amount of sunlight a tomato plant receives affect the size of the tomatoes?"

HYPOTHESIS: "I believe that the more sunlight a tomato plant receives, the larger the tomatoes will grow.

This hypothesis is based on:

(1) Tomato plants need sunshine to make food through photosynthesis, and logically, more sun means more food, and;

(2) Through informal, exploratory observations of plants in a garden, those with more sunlight appear to grow bigger.

science fair project ideas

The hypothesis is your general statement of how you think the scientific phenomenon in question works.

Your prediction lets you get specific -- how will you demonstrate that your hypothesis is true? The experiment that you will design is done to test the prediction.

An important thing to remember during this stage of the scientific method is that once you develop a hypothesis and a prediction, you shouldn't change it, even if the results of your experiment show that you were wrong.

An incorrect prediction does NOT mean that you "failed." It just means that the experiment brought some new facts to light that maybe you hadn't thought about before.

Continuing our tomato plant example, a good prediction would be: Increasing the amount of sunlight tomato plants in my experiment receive will cause an increase in their size compared to identical plants that received the same care but less light.

This is the part of the scientific method that tests your hypothesis. An experiment is a tool that you design to find out if your ideas about your topic are right or wrong.

It is absolutely necessary to design a science fair experiment that will accurately test your hypothesis. The experiment is the most important part of the scientific method. It's the logical process that lets scientists learn about the world.

On the next page, we'll discuss the ways that you can go about designing a science fair experiment idea.

The final step in the scientific method is the conclusion. This is a summary of the experiment's results, and how those results match up to your hypothesis.

You have two options for your conclusions: based on your results, either:

(1) YOU CAN REJECT the hypothesis, or

(2) YOU CAN NOT REJECT the hypothesis.

This is an important point!

You can not PROVE the hypothesis with a single experiment, because there is a chance that you made an error somewhere along the way.

What you can say is that your results SUPPORT the original hypothesis.

If your original hypothesis didn't match up with the final results of your experiment, don't change the hypothesis.

Instead, try to explain what might have been wrong with your original hypothesis. What information were you missing when you made your prediction? What are the possible reasons the hypothesis and experimental results didn't match up?

Remember, a science fair experiment isn't a failure simply because does not agree with your hypothesis. No one will take points off if your prediction wasn't accurate. Many important scientific discoveries were made as a result of experiments gone wrong!

A science fair experiment is only a failure if its design is flawed. A flawed experiment is one that (1) doesn't keep its variables under control, and (2) doesn't sufficiently answer the question that you asked of it.

Search This Site:

Science Fairs

  • Introduction
  • Project Ideas
  • Types of Projects
  • Pick a Topic
  • Scientific Method
  • Design Your Experiment
  • Present Your Project
  • What Judges Want
  • Parent Info

Recommended *

  • Sample Science Projects - botany, ecology, microbiology, nutrition

scientific method book

* This site contains affiliate links to carefully chosen, high quality products. We may receive a commission for purchases made through these links.

  • Terms of Service

Copyright © 2006 - 2023, Science Made Simple, Inc. All Rights Reserved.

The science fair projects & ideas, science articles and all other material on this website are covered by copyright laws and may not be reproduced without permission.

The Scientific Method Tutorial

The scientific method, steps in the scientific method.

There is a great deal of variation in the specific techniques scientists use explore the natural world. However, the following steps characterize the majority of scientific investigations:

Step 1: Make observations Step 2: Propose a hypothesis to explain observations Step 3: Test the hypothesis with further observations or experiments Step 4: Analyze data Step 5: State conclusions about hypothesis based on data analysis

Each of these steps is explained briefly below, and in more detail later in this section.

Step 1: Make observations

A scientific inquiry typically starts with observations. Often, simple observations will trigger a question in the researcher's mind.

Example: A biologist frequently sees monarch caterpillars feeding on milkweed plants, but rarely sees them feeding on other types of plants. She wonders if it is because the caterpillars prefer milkweed over other food choices.

Step 2: Propose a hypothesis

The researcher develops a hypothesis (singular) or hypotheses (plural) to explain these observations. A hypothesis is a tentative explanation of a phenomenon or observation(s) that can be supported or falsified by further observations or experimentation.

Example: The researcher hypothesizes that monarch caterpillars prefer to feed on milkweed compared to other common plants. (Notice how the hypothesis is a statement, not a question as in step 1.)

Step 3: Test the hypothesis

The researcher makes further observations and/or may design an experiment to test the hypothesis. An experiment is a controlled situation created by a researcher to test the validity of a hypothesis. Whether further observations or an experiment is used to test the hypothesis will depend on the nature of the question and the practicality of manipulating the factors involved.

Example: The researcher sets up an experiment in the lab in which a number of monarch caterpillars are given a choice between milkweed and a number of other common plants to feed on.

Step 4: Analyze data

The researcher summarizes and analyzes the information, or data, generated by these further observations or experiments.

Example: In her experiment, milkweed was chosen by caterpillars 9 times out of 10 over all other plant selections.

Step 5: State conclusions

The researcher interprets the results of experiments or observations and forms conclusions about the meaning of these results. These conclusions are generally expressed as probability statements about their hypothesis.

Example: She concludes that when given a choice, 90 percent of monarch caterpillars prefer to feed on milkweed over other common plants.

Often, the results of one scientific study will raise questions that may be addressed in subsequent research. For example, the above study might lead the researcher to wonder why monarchs seem to prefer to feed on milkweed, and she may plan additional experiments to explore this question. For example, perhaps the milkweed has higher nutritional value than other available plants.

Return to top of page

The Scientific Method Flowchart

The steps in the scientific method are presented visually in the following flow chart. The question raised or the results obtained at each step directly determine how the next step will proceed. Following the flow of the arrows, pass the cursor over each blue box. An explanation and example of each step will appear. As you read the example given at each step, see if you can predict what the next step will be.

Activity: Apply the Scientific Method to Everyday Life Use the steps of the scientific method described above to solve a problem in real life. Suppose you come home one evening and flick the light switch only to find that the light doesn’t turn on. What is your hypothesis? How will you test that hypothesis? Based on the result of this test, what are your conclusions? Follow your instructor's directions for submitting your response.

The above flowchart illustrates the logical sequence of conclusions and decisions in a typical scientific study. There are some important points to note about this process:

1. The steps are clearly linked.

The steps in this process are clearly linked. The hypothesis, formed as a potential explanation for the initial observations, becomes the focus of the study. The hypothesis will determine what further observations are needed or what type of experiment should be done to test its validity. The conclusions of the experiment or further observations will either be in agreement with or will contradict the hypothesis. If the results are in agreement with the hypothesis, this does not prove that the hypothesis is true! In scientific terms, it "lends support" to the hypothesis, which will be tested again and again under a variety of circumstances before researchers accept it as a fairly reliable description of reality.

2. The same steps are not followed in all types of research.

The steps described above present a generalized method followed in a many scientific investigations. These steps are not carved in stone. The question the researcher wishes to answer will influence the steps in the method and how they will be carried out. For example, astronomers do not perform many experiments as defined here. They tend to rely on observations to test theories. Biologists and chemists have the ability to change conditions in a test tube and then observe whether the outcome supports or invalidates their starting hypothesis, while astronomers are not able to change the path of Jupiter around the Sun and observe the outcome!

3. Collected observations may lead to the development of theories.

When a large number of observations and/or experimental results have been compiled, and all are consistent with a generalized description of how some element of nature operates, this description is called a theory. Theories are much broader than hypotheses and are supported by a wide range of evidence. Theories are important scientific tools. They provide a context for interpretation of new observations and also suggest experiments to test their own validity. Theories are discussed in more detail in another section.

The Scientific Method in Detail

In the sections that follow, each step in the scientific method is described in more detail.

Step 1: Observations

Observations in science.

An observation is some thing, event, or phenomenon that is noticed or observed. Observations are listed as the first step in the scientific method because they often provide a starting point, a source of questions a researcher may ask. For example, the observation that leaves change color in the fall may lead a researcher to ask why this is so, and to propose a hypothesis to explain this phenomena. In fact, observations also will provide the key to answering the research question.

In science, observations form the foundation of all hypotheses, experiments, and theories. In an experiment, the researcher carefully plans what observations will be made and how they will be recorded. To be accepted, scientific conclusions and theories must be supported by all available observations. If new observations are made which seem to contradict an established theory, that theory will be re-examined and may be revised to explain the new facts. Observations are the nuts and bolts of science that researchers use to piece together a better understanding of nature.

Observations in science are made in a way that can be precisely communicated to (and verified by) other researchers. In many types of studies (especially in chemistry, physics, and biology), quantitative observations are used. A quantitative observation is one that is expressed and recorded as a quantity, using some standard system of measurement. Quantities such as size, volume, weight, time, distance, or a host of others may be measured in scientific studies.

Some observations that researchers need to make may be difficult or impossible to quantify. Take the example of color. Not all individuals perceive color in exactly the same way. Even apart from limiting conditions such as colorblindness, the way two people see and describe the color of a particular flower, for example, will not be the same. Color, as perceived by the human eye, is an example of a qualitative observation.

Qualitative observations note qualities associated with subjects or samples that are not readily measured. Other examples of qualitative observations might be descriptions of mating behaviors, human facial expressions, or "yes/no" type of data, where some factor is present or absent. Though the qualities of an object may be more difficult to describe or measure than any quantities associated with it, every attempt is made to minimize the effects of the subjective perceptions of the researcher in the process. Some types of studies, such as those in the social and behavioral sciences (which deal with highly variable human subjects), may rely heavily on qualitative observations.

Question: Why are observations important to science?

Limits of Observations

Because all observations rely to some degree on the senses (eyes, ears, or steady hand) of the researcher, complete objectivity is impossible. Our human perceptions are limited by the physical abilities of our sense organs and are interpreted according to our understanding of how the world works, which can be influenced by culture, experience, or education. According to science education specialist, George F. Kneller, "Surprising as it may seem, there is no fact that is not colored by our preconceptions" ("A Method of Enquiry," from Science and Its Ways of Knowing [Upper Saddle River: Prentice-Hall Inc., 1997], 15).

Observations made by a scientist are also limited by the sensitivity of whatever equipment he is using. Research findings will be limited at times by the available technology. For example, Italian physicist and philosopher Galileo Galilei (1564–1642) was reportedly the first person to observe the heavens with a telescope. Imagine how it must have felt to him to see the heavens through this amazing new instrument! It opened a window to the stars and planets and allowed new observations undreamed of before.

In the centuries since Galileo, increasingly more powerful telescopes have been devised that dwarf the power of that first device. In the past decade, we have marveled at images from deep space , courtesy of the Hubble Space Telescope, a large telescope that orbits Earth. Because of its view from outside the distorting effects of the atmosphere, the Hubble can look 50 times farther into space than the best earth-bound telescopes, and resolve details a tenth of the size (Seeds, Michael A., Horizons: Exploring the Universe , 5 th ed. [Belmont: Wadsworth Publishing Company, 1998], 86-87).

Construction is underway on a new radio telescope that scientists say will be able to detect electromagnetic waves from the very edges of the universe! This joint U.S.-Mexican project may allow us to ask questions about the origins of the universe and the beginnings of time that we could never have hoped to answer before. Completion of the new telescope is expected by the end of 2001.

Although the amount of detail observed by Galileo and today's astronomers is vastly different, the stars and their relationships have not changed very much. Yet with each technological advance, the level of detail of observation has been increased, and with it, the power to answer more and more challenging questions with greater precision.

Question: What are some of the differences between a casual observation and a 'scientific observation'?

Step 2: The Hypothesis

A hypothesis is a statement created by the researcher as a potential explanation for an observation or phenomena. The hypothesis converts the researcher's original question into a statement that can be used to make predictions about what should be observed if the hypothesis is true. For example, given the hypothesis, "exposure to ultraviolet (UV) radiation increases the risk of skin cancer," one would predict higher rates of skin cancer among people with greater UV exposure. These predictions could be tested by comparing skin cancer rates among individuals with varying amounts of UV exposure. Note how the hypothesis itself determines what experiments or further observations should be made to test its validity. Results of tests are then compared to predictions from the hypothesis, and conclusions are stated in terms of whether or not the data supports the hypothesis. So the hypothesis serves a guide to the full process of scientific inquiry.

The Qualities of a Good Hypothesis

  • A hypothesis must be testable or provide predictions that are testable. It can potentially be shown to be false by further observations or experimentation.
  • A hypothesis should be specific. If it is too general it cannot be tested, or tests will have so many variables that the results will be complicated and difficult to interpret. A well-written hypothesis is so specific it actually determines how the experiment should be set up.
  • A hypothesis should not include any untested assumptions if they can be avoided. The hypothesis itself may be an assumption that is being tested, but it should be phrased in a way that does not include assumptions that are not tested in the experiment.
  • It is okay (and sometimes a good idea) to develop more than one hypothesis to explain a set of observations. Competing hypotheses can often be tested side-by-side in the same experiment.

Question: Why is the hypothesis important to the scientific method?

Step 3: Testing the Hypothesis

A hypothesis may be tested in one of two ways: by making additional observations of a natural situation, or by setting up an experiment. In either case, the hypothesis is used to make predictions, and the observations or experimental data collected are examined to determine if they are consistent or inconsistent with those predictions. Hypothesis testing, especially through experimentation, is at the core of the scientific process. It is how scientists gain a better understanding of how things work.

Testing a Hypothesis by Observation

Some hypotheses may be tested through simple observation. For example, a researcher may formulate the hypothesis that the sun always rises in the east. What might an alternative hypothesis be? If his hypothesis is correct, he would predict that the sun will rise in the east tomorrow. He can easily test such a prediction by rising before dawn and going out to observe the sunrise. If the sun rises in the west, he will have disproved the hypothesis. He will have shown that it does not hold true in every situation. However, if he observes on that morning that the sun does in fact rise in the east, he has not proven the hypothesis. He has made a single observation that is consistent with, or supports, the hypothesis. As a scientist, to confidently state that the sun will always rise in the east, he will want to make many observations, under a variety of circumstances. Note that in this instance no manipulation of circumstance is required to test the hypothesis (i.e., you aren't altering the sun in any way).

Testing a Hypothesis by Experimentation

An experiment is a controlled series of observations designed to test a specific hypothesis. In an experiment, the researcher manipulates factors related to the hypothesis in such a way that the effect of these factors on the observations (data) can be readily measured and compared. Most experiments are an attempt to define a cause-and-effect relationship between two factors or events—to explain why something happens. For example, with the hypothesis "roses planted in sunny areas bloom earlier than those grown in shady areas," the experiment would be testing a cause-and-effect relationship between sunlight and time of blooming.

A major advantage of setting up an experiment versus making observations of what is already available is that it allows the researcher to control all the factors or events related to the hypothesis, so that the true cause of an event can be more easily isolated. In all cases, the hypothesis itself will determine the way the experiment will be set up. For example, suppose my hypothesis is "the weight of an object is proportional to the amount of time it takes to fall a certain distance." How would you test this hypothesis?

The Qualities of a Good Experiment

  • The experiment must be conducted on a group of subjects that are narrowly defined and have certain aspects in common. This is the group to which any conclusions must later be confined. (Examples of possible subjects: female cancer patients over age 40, E. coli bacteria, red giant stars, the nicotine molecule and its derivatives.)
  • All subjects of the experiment should be (ideally) completely alike in all ways except for the factor or factors that are being tested. Factors that are compared in scientific experiments are called variables. A variable is some aspect of a subject or event that may differ over time or from one group of subjects to another. For example, if a biologist wanted to test the effect of nitrogen on grass growth, he would apply different amounts of nitrogen fertilizer to several plots of grass. The grass in each of the plots should be as alike as possible so that any difference in growth could be attributed to the effect of the nitrogen. For example, all the grass should be of the same species, planted at the same time and at the same density, receive the same amount of water and sunlight, and so on. The variable in this case would be the amount of nitrogen applied to the plants. The researcher would not compare differing amounts of nitrogen across different grass species to determine the effect of nitrogen on grass growth. What is the problem with using different species of plants to compare the effect of nitrogen on plant growth? There are different kinds of variables in an experiment. A factor that the experimenter controls, and changes intentionally to determine if it has an effect, is called an independent variable . A factor that is recorded as data in the experiment, and which is compared across different groups of subjects, is called a dependent variable . In many cases, the value of the dependent variable will be influenced by the value of an independent variable. The goal of the experiment is to determine a cause-and-effect relationship between independent and dependent variables—in this case, an effect of nitrogen on plant growth. In the nitrogen/grass experiment, (1) which factor was the independent variable? (2) Which factor was the dependent variable?
  • Nearly all types of experiments require a control group and an experimental group. The control group generally is not changed in any way, but remains in a "natural state," while the experimental group is modified in some way to examine the effect of the variable which of interest to the researcher. The control group provides a standard of comparison for the experimental groups. For example, in new drug trials, some patients are given a placebo while others are given doses of the drug being tested. The placebo serves as a control by showing the effect of no drug treatment on the patients. In research terminology, the experimental groups are often referred to as treatments , since each group is treated differently. In the experimental test of the effect of nitrogen on grass growth, what is the control group? In the example of the nitrogen experiment, what is the purpose of a control group?
  • In research studies a great deal of emphasis is placed on repetition. It is essential that an experiment or study include enough subjects or enough observations for the researcher to make valid conclusions. The two main reasons why repetition is important in scientific studies are (1) variation among subjects or samples and (2) measurement error.

Variation among Subjects

There is a great deal of variation in nature. In a group of experimental subjects, much of this variation may have little to do with the variables being studied, but could still affect the outcome of the experiment in unpredicted ways. For example, in an experiment designed to test the effects of alcohol dose levels on reflex time in 18- to 22-year-old males, there would be significant variation among individual responses to various doses of alcohol. Some of this variation might be due to differences in genetic make-up, to varying levels of previous alcohol use, or any number of factors unknown to the researcher.

Because what the researcher wants to discover is average dose level effects for this group, he must run the test on a number of different subjects. Suppose he performed the test on only 10 individuals. Do you think the average response calculated would be the same as the average response of all 18- to 22-year-old males? What if he tests 100 individuals, or 1,000? Do you think the average he comes up with would be the same in each case? Chances are it would not be. So which average would you predict would be most representative of all 18- to 22-year-old males?

A basic rule of statistics is, the more observations you make, the closer the average of those observations will be to the average for the whole population you are interested in. This is because factors that vary among a population tend to occur most commonly in the middle range, and least commonly at the two extremes. Take human height for example. Although you may find a man who is 7 feet tall, or one who is 4 feet tall, most men will fall somewhere between 5 and 6 feet in height. The more men we measure to determine average male height, the less effect those uncommon extreme (tall or short) individuals will tend to impact the average. Thus, one reason why repetition is so important in experiments is that it helps to assure that the conclusions made will be valid not only for the individuals tested, but also for the greater population those individuals represent.

"The use of a sample (or subset) of a population, an event, or some other aspect of nature for an experimental group that is not large enough to be representative of the whole" is called sampling error (Starr, Cecie, Biology: Concepts and Applications , 4 th ed. [Pacific Cove: Brooks/Cole, 2000], glossary). If too few samples or subjects are used in an experiment, the researcher may draw incorrect conclusions about the population those samples or subjects represent.

Use the jellybean activity below to see a simple demonstration of samping error.

Directions: There are 400 jellybeans in the jar. If you could not see the jar and you initially chose 1 green jellybean from the jar, you might assume the jar only contains green jelly beans. The jar actually contains both green and black jellybeans. Use the "pick 1, 5, or 10" buttons to create your samples. For example, use the "pick" buttons now to create samples of 2, 13, and 27 jellybeans. After you take each sample, try to predict the ratio of green to black jellybeans in the jar. How does your prediction of the ratio of green to black jellybeans change as your sample changes?

Measurement Error

The second reason why repetition is necessary in research studies has to do with measurement error. Measurement error may be the fault of the researcher, a slight difference in measuring techniques among one or more technicians, or the result of limitations or glitches in measuring equipment. Even the most careful researcher or the best state-of-the-art equipment will make some mistakes in measuring or recording data. Another way of looking at this is to say that, in any study, some measurements will be more accurate than others will. If the researcher is conscientious and the equipment is good, the majority of measurements will be highly accurate, some will be somewhat inaccurate, and a few may be considerably inaccurate. In this case, the same reasoning used above also applies here: the more measurements taken, the less effect a few inaccurate measurements will have on the overall average.

Step 4: Data Analysis

In any experiment, observations are made, and often, measurements are taken. Measurements and observations recorded in an experiment are referred to as data . The data collected must relate to the hypothesis being tested. Any differences between experimental and control groups must be expressed in some way (often quantitatively) so that the groups may be compared. Graphs and charts are often used to visualize the data and to identify patterns and relationships among the variables.

Statistics is the branch of mathematics that deals with interpretation of data. Data analysis refers to statistical methods of determining whether any differences between the control group and experimental groups are too great to be attributed to chance alone. Although a discussion of statistical methods is beyond the scope of this tutorial, the data analysis step is crucial because it provides a somewhat standardized means for interpreting data. The statistical methods of data analysis used, and the results of those analyses, are always included in the publication of scientific research. This convention limits the subjective aspects of data interpretation and allows scientists to scrutinize the working methods of their peers.

Why is data analysis an important step in the scientific method?

Step 5: Stating Conclusions

The conclusions made in a scientific experiment are particularly important. Often, the conclusion is the only part of a study that gets communicated to the general public. As such, it must be a statement of reality, based upon the results of the experiment. To assure that this is the case, the conclusions made in an experiment must (1) relate back to the hypothesis being tested, (2) be limited to the population under study, and (3) be stated as probabilities.

The hypothesis that is being tested will be compared to the data collected in the experiment. If the experimental results contradict the hypothesis, it is rejected and further testing of that hypothesis under those conditions is not necessary. However, if the hypothesis is not shown to be wrong, that does not conclusively prove that it is right! In scientific terms, the hypothesis is said to be "supported by the data." Further testing will be done to see if the hypothesis is supported under a number of trials and under different conditions.

If the hypothesis holds up to extensive testing then the temptation is to claim that it is correct. However, keep in mind that the number of experiments and observations made will only represent a subset of all the situations in which the hypothesis may potentially be tested. In other words, experimental data will only show part of the picture. There is always the possibility that a further experiment may show the hypothesis to be wrong in some situations. Also, note that the limits of current knowledge and available technologies may prevent a researcher from devising an experiment that would disprove a particular hypothesis.

The researcher must be sure to limit his or her conclusions to apply only to the subjects tested in the study. If a particular species of fish is shown to consume their young 90 percent of the time when raised in captivity, that doesn't necessarily mean that all fish will do so, or that this fish's behavior would be the same in its native habitat.

Finally, the conclusions of the experiment are generally stated as probabilities. A careful scientist would never say, "drug x kills cancer cells;" she would more likely say, "drug x was shown to destroy 85 percent of cancerous skin cells in rats in lab trials." Notice how very different these two statements are. There is a tendency in the media and in the general public to gravitate toward the first statement. This makes a terrific headline and is also easy to interpret; it is absolute. Remember though, in science conclusions must be confined to the population under study; broad generalizations should be avoided. The second statement is sound science. There is data to back it up. Later studies may reveal a more universal effect of the drug on cancerous cells, or they may not. Most researchers would be unwilling to stake their reputations on the first statement.

As a student, you should read and interpret popular press articles about research studies very carefully. From the text, can you determine how the experiment was set up and what variables were measured? Are the observations and data collected appropriate to the hypothesis being tested? Are the conclusions supported by the data? Are the conclusions worded in a scientific context (as probability statements) or are they generalized for dramatic effect? In any researched-based assignment, it is a good idea to refer to the original publication of a study (usually found in professional journals) and to interpret the facts for yourself.

Qualities of a Good Experiment

  • narrowly defined subjects
  • all subjects treated alike except for the factor or variable being studied
  • a control group is used for comparison
  • measurements related to the factors being studied are carefully recorded
  • enough samples or subjects are used so that conclusions are valid for the population of interest
  • conclusions made relate back to the hypothesis, are limited to the population being studied, and are stated in terms of probabilities

Science and the scientific method: Definitions and examples

Here's a look at the foundation of doing science — the scientific method.

Kids follow the scientific method to carry out an experiment.

The scientific method

Hypothesis, theory and law, a brief history of science, additional resources, bibliography.

Science is a systematic and logical approach to discovering how things in the universe work. It is also the body of knowledge accumulated through the discoveries about all the things in the universe. 

The word "science" is derived from the Latin word "scientia," which means knowledge based on demonstrable and reproducible data, according to the Merriam-Webster dictionary . True to this definition, science aims for measurable results through testing and analysis, a process known as the scientific method. Science is based on fact, not opinion or preferences. The process of science is designed to challenge ideas through research. One important aspect of the scientific process is that it focuses only on the natural world, according to the University of California, Berkeley . Anything that is considered supernatural, or beyond physical reality, does not fit into the definition of science.

When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement) that is designed to support or contradict a scientific theory .

"As a field biologist, my favorite part of the scientific method is being in the field collecting the data," Jaime Tanner, a professor of biology at Marlboro College, told Live Science. "But what really makes that fun is knowing that you are trying to answer an interesting question. So the first step in identifying questions and generating possible answers (hypotheses) is also very important and is a creative process. Then once you collect the data you analyze it to see if your hypothesis is supported or not."

Here's an illustration showing the steps in the scientific method.

The steps of the scientific method go something like this, according to Highline College :

  • Make an observation or observations.
  • Form a hypothesis — a tentative description of what's been observed, and make predictions based on that hypothesis.
  • Test the hypothesis and predictions in an experiment that can be reproduced.
  • Analyze the data and draw conclusions; accept or reject the hypothesis or modify the hypothesis if necessary.
  • Reproduce the experiment until there are no discrepancies between observations and theory. "Replication of methods and results is my favorite step in the scientific method," Moshe Pritsker, a former post-doctoral researcher at Harvard Medical School and CEO of JoVE, told Live Science. "The reproducibility of published experiments is the foundation of science. No reproducibility — no science."

Some key underpinnings to the scientific method:

  • The hypothesis must be testable and falsifiable, according to North Carolina State University . Falsifiable means that there must be a possible negative answer to the hypothesis.
  • Research must involve deductive reasoning and inductive reasoning . Deductive reasoning is the process of using true premises to reach a logical true conclusion while inductive reasoning uses observations to infer an explanation for those observations.
  • An experiment should include a dependent variable (which does not change) and an independent variable (which does change), according to the University of California, Santa Barbara .
  • An experiment should include an experimental group and a control group. The control group is what the experimental group is compared against, according to Britannica .

The process of generating and testing a hypothesis forms the backbone of the scientific method. When an idea has been confirmed over many experiments, it can be called a scientific theory. While a theory provides an explanation for a phenomenon, a scientific law provides a description of a phenomenon, according to The University of Waikato . One example would be the law of conservation of energy, which is the first law of thermodynamics that says that energy can neither be created nor destroyed. 

A law describes an observed phenomenon, but it doesn't explain why the phenomenon exists or what causes it. "In science, laws are a starting place," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "From there, scientists can then ask the questions, 'Why and how?'"

Laws are generally considered to be without exception, though some laws have been modified over time after further testing found discrepancies. For instance, Newton's laws of motion describe everything we've observed in the macroscopic world, but they break down at the subatomic level.

This does not mean theories are not meaningful. For a hypothesis to become a theory, scientists must conduct rigorous testing, typically across multiple disciplines by separate groups of scientists. Saying something is "just a theory" confuses the scientific definition of "theory" with the layperson's definition. To most people a theory is a hunch. In science, a theory is the framework for observations and facts, Tanner told Live Science.

This Copernican heliocentric solar system, from 1708, shows the orbit of the moon around the Earth, and the orbits of the Earth and planets round the sun, including Jupiter and its moons, all surrounded by the 12 signs of the zodiac.

The earliest evidence of science can be found as far back as records exist. Early tablets contain numerals and information about the solar system , which were derived by using careful observation, prediction and testing of those predictions. Science became decidedly more "scientific" over time, however.

1200s: Robert Grosseteste developed the framework for the proper methods of modern scientific experimentation, according to the Stanford Encyclopedia of Philosophy. His works included the principle that an inquiry must be based on measurable evidence that is confirmed through testing.

1400s: Leonardo da Vinci began his notebooks in pursuit of evidence that the human body is microcosmic. The artist, scientist and mathematician also gathered information about optics and hydrodynamics.

1500s: Nicolaus Copernicus advanced the understanding of the solar system with his discovery of heliocentrism. This is a model in which Earth and the other planets revolve around the sun, which is the center of the solar system.

1600s: Johannes Kepler built upon those observations with his laws of planetary motion. Galileo Galilei improved on a new invention, the telescope, and used it to study the sun and planets. The 1600s also saw advancements in the study of physics as Isaac Newton developed his laws of motion.

1700s: Benjamin Franklin discovered that lightning is electrical. He also contributed to the study of oceanography and meteorology. The understanding of chemistry also evolved during this century as Antoine Lavoisier, dubbed the father of modern chemistry , developed the law of conservation of mass.

1800s: Milestones included Alessandro Volta's discoveries regarding electrochemical series, which led to the invention of the battery. John Dalton also introduced atomic theory, which stated that all matter is composed of atoms that combine to form molecules. The basis of modern study of genetics advanced as Gregor Mendel unveiled his laws of inheritance. Later in the century, Wilhelm Conrad Röntgen discovered X-rays , while George Ohm's law provided the basis for understanding how to harness electrical charges.

1900s: The discoveries of Albert Einstein , who is best known for his theory of relativity, dominated the beginning of the 20th century. Einstein's theory of relativity is actually two separate theories. His special theory of relativity, which he outlined in a 1905 paper, " The Electrodynamics of Moving Bodies ," concluded that time must change according to the speed of a moving object relative to the frame of reference of an observer. His second theory of general relativity, which he published as " The Foundation of the General Theory of Relativity ," advanced the idea that matter causes space to curve.

In 1952, Jonas Salk developed the polio vaccine , which reduced the incidence of polio in the United States by nearly 90%, according to Britannica . The following year, James D. Watson and Francis Crick discovered the structure of DNA , which is a double helix formed by base pairs attached to a sugar-phosphate backbone, according to the National Human Genome Research Institute .

2000s: The 21st century saw the first draft of the human genome completed, leading to a greater understanding of DNA. This advanced the study of genetics, its role in human biology and its use as a predictor of diseases and other disorders, according to the National Human Genome Research Institute .

  • This video from City University of New York delves into the basics of what defines science.
  • Learn about what makes science science in this book excerpt from Washington State University .
  • This resource from the University of Michigan — Flint explains how to design your own scientific study.

Merriam-Webster Dictionary, Scientia. 2022. https://www.merriam-webster.com/dictionary/scientia

University of California, Berkeley, "Understanding Science: An Overview." 2022. ​​ https://undsci.berkeley.edu/article/0_0_0/intro_01  

Highline College, "Scientific method." July 12, 2015. https://people.highline.edu/iglozman/classes/astronotes/scimeth.htm  

North Carolina State University, "Science Scripts." https://projects.ncsu.edu/project/bio183de/Black/science/science_scripts.html  

University of California, Santa Barbara. "What is an Independent variable?" October 31,2017. http://scienceline.ucsb.edu/getkey.php?key=6045  

Encyclopedia Britannica, "Control group." May 14, 2020. https://www.britannica.com/science/control-group  

The University of Waikato, "Scientific Hypothesis, Theories and Laws." https://sci.waikato.ac.nz/evolution/Theories.shtml  

Stanford Encyclopedia of Philosophy, Robert Grosseteste. May 3, 2019. https://plato.stanford.edu/entries/grosseteste/  

Encyclopedia Britannica, "Jonas Salk." October 21, 2021. https://www.britannica.com/ biography /Jonas-Salk

National Human Genome Research Institute, "​Phosphate Backbone." https://www.genome.gov/genetics-glossary/Phosphate-Backbone  

National Human Genome Research Institute, "What is the Human Genome Project?" https://www.genome.gov/human-genome-project/What  

‌ Live Science contributor Ashley Hamer updated this article on Jan. 16, 2022.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

What is DANA, the strange weather phenomenon that has caused deadly flooding in Spain?

Earth is racing toward climate conditions that collapsed key Atlantic currents before the last ice age, study finds

Quantum computers are here — but why do we need them and what will they be used for?

Most Popular

  • 2 Does alien life need a planet to survive? Scientists propose intriguing possibility
  • 3 Black holes could be driving the expansion of the universe, new study suggests
  • 4 In a 1st, scientists reversed type 1 diabetes by reprogramming a person's own fat cells
  • 5 Father-daughter team decodes 'alien signal' from Mars that stumped the world for a year

in the scientific method a hypothesis is a what

extension logo for printing

The Scientific Method

Introduction.

There are many scientific disciplines that address topics from medicine and astrophysics to agriculture and zoology. In each discipline, modern scientists use a process called the "Scientific Method" to advance their knowledge and understanding. This publication describes the method scientists use to conduct research and describe and explain nature, ultimately trying prove or disprove theories.

Scientists all over the world conduct research using the Scientific Method. The University of Nevada Cooperative Extension exists to provide unbiased, research-based information on topics important and relevant to society. The scientific research efforts, analyses, and subsequent information disseminated by Cooperative Extension is driven by careful review and synthesis of relevant scientific research. Cooperative Extension presents useful information based on the best science available, and today that science is based on knowledge obtained by application of the Scientific Method.

The Scientific Method – What it’s Not

The Scientific Method is a process for explaining the world we see. It is:

  • Not a formula

The Scientific Method – What is it?

The Scientific Method is a process used to validate observations while minimizing observer bias. Its goal is for research to be conducted in a fair, unbiased and repeatable manner.

Long ago, people viewed the workings of nature and believed that the events and phenomena they observed were associated with the intrinsic nature of the beings or things being observed (Ackoff 1962, Wilson 1937). Today we view events and phenomena as having been caused , and science has evolved as a process to ask how and why things and events happen. Scientists seek to understand the relationships and intricacies between cause and effect in order to predict outcomes of future or similar events. To answer these questions and to help predict future happenings, scientists use the Scientific Method - a series of steps that lead to answers that accurately describe the things we observe, or at least improve our understanding of them.

The Scientific Method is not the only way, but is the best-known way to discover how and why the world works, without our knowledge being tainted by religious, political, or philosophical values. This method provides a means to formulate questions about general observations and devise theories of explanation. The approach lends itself to answering questions in fair and unbiased statements, as long as questions are posed correctly, in a hypothetical form that can be tested.

Definitions

It is important to understand three important terms before describing the Scientific Method.

This is a statement made by a researcher that is a working assumption to be tested and proven. It is something "considered true for the purpose of investigation" (Webster’s Dictionary 1995). An example might be “The earth is round.”

general principles drawn from facts that explain observations and can be used to predict new events. An example would be Newton’s theory of gravitation or Einstein’s theory of relativity. Each is based on falsifiable hypotheses of phenomenon we observe.

Falsifiable/ Null Hypothesis

to prove to be false (Webster’s Dictionary 1995). The hypothesis that is generated must be able to be tested, and either accepted or rejected. Scientists make hypotheses that they want to disprove in order that they may prove the working assumption describing the observed phenomena. This is done by declaring the statement or hypothesis as falsifiable . So, we would state the above hypothesis as “the earth is not round,” or “the earth is square” making it a working statement to be disproved.

The Scientific Method is not a formula, but rather a process with a number of sequential steps designed to create an explainable outcome that increases our knowledge base. This process is as follows:

STEP 1. Make an OBSERVATION

gather and assimilate information about an event, phenomenon, process, or an exception to a previous observation, etc.

STEP 2. Define the PROBLEM

ask questions about the observation that are relevant and testable. Define the null hypothesis to provide unbiased results.

STEP 3: Form the HYPOTHESIS

create an explanation, or educated guess, for the observation that is testable and falsifiable.

STEP 4: Conduct the EXPERIMENT

devise and perform an experiment to test the hypothesis.

STEP 5: Derive a THEORY

create a statement based in the outcome of the experiment that explains the observation(s) and predicts the likelihood of future observations.

Replication

Using the Scientific Method to answer questions about events or phenomena we observe can be repeated to fine-tune our theories. For example, if we conduct research using the Scientific Method and think we have answered a question, but different results occur the next time we make an observation, we may have to ask new questions and formulate new hypotheses that are tested by another experiment. Sometimes scientists must perform many experiments over many years or even decades using the Scientific Method to prove or disprove theories that are generated from one initial question. Numerous studies are often necessary to fully test the broad range of results that occur in order that scientists can formulate theories that truly account for the variation we see in our natural environment.

The Scientific Method – Is it worth all the effort?

Scientific knowledge can only advance when all scientists systematically use the same process to discover and disseminate new information. The advantage of all scientific research using the Scientific Method is that the experiments are repeatable by anyone, anywhere. When similar results occur in each experiment, these facts make the case for the theory stronger. If the same experiment is performed many times in many different locations, under a broad range of conditions, then the theory derived from these experiments is considered strong and widely applicable. If the questions are posed as testable hypotheses that rely on inductive reasoning and empiricism – that is, observations and data collection – then experiments can be devised to generate logical theories that explain the things we see. If we understand why the observed results occur, then we can accurately apply concepts derived from the experiment to other situations.

What do we need to consider when using the Scientific Method?

The Scientific Method requires that we ask questions and perform experiments to prove or disprove questions in ways that will lead to unbiased answers. Experiments must be well designed to provide accurate and repeatable (precise) results. If we test hypotheses correctly, then we can prove the cause of a phenomenon and determine the likelihood (probability) of the events to happen again. This provides predictive power. The Scientific Method enables us to test a hypothesis and distinguish between the correlation of two or more things happening in association with each other and the actual cause of the phenomenon we observe.

Correlation of two variables cannot explain the cause and effect of their relationship. Scientists design experiments using a number of methods to ensure the results reveal the likelihood of the observation happening (probability). Controlled experiments are used to analyze these relationships and develop cause and effect relationships. Statistical analysis is used to determine whether differences between treatments can be attributed to the treatment applied, if they are artifacts of the experimental design, or of natural variation.

In summary, the Scientific Method produces answers to questions posed in the form of a working hypothesis that enables us to derive theories about what we observe in the world around us. Its power lies in its ability to be repeated, providing unbiased answers to questions to derive theories. This information is powerful and offers opportunity to predict future events and phenomena.

Bibliography

  • Ackoff, R. 1962. Scientific Method, Optimizing Applied Research Decisions. Wiley and Sons, New York, NY.
  • Wilson, F. 1937. The Logic and Methodology of Science in Early Modern Thought. University of Toronto Press. Buffalo, NY.
  • Committee on Science, Engineering, and Public Policy. Experimental Error. 1995. From: On Being a Scientist: Responsible Conduct in Research. Second Edition.
  • The Gale Group. The Scientific Method. 2001. Gale Encyclopedia of Psychology. Second Edition.

Extension Associated Contacts

Angela O'Callaghan

Also of Interest:

An EEO/AA Institution. Copyright © 2024 , University of Nevada Cooperative Extension. A partnership of Nevada counties; University of Nevada, Reno; and the U.S. Department of Agriculture

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

What Is a Hypothesis and How Do I Write One?

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Pfeiffer Library

The Scientific Method

What is the scientific method, research starters, observation, analyze results, draw conclusions.

  • Scientific Method Resources

According to Kosso (2011), the scientific method is a specific step-by-step method that aims to answer a question or prove a hypothesis.  It is the process used among all scientific disciplines and is used to conduct both small and large experiments.  It has been used for centuries to solve scientific problems and identify solutions.  While the terminology can be different across disciplines, the scientific method follows these six steps (Larson, 2015):

  • Analyze results
  • Draw conclusions

Click on each link to learn more about each step in the scientific method, or watch the video below for an introduction to each step.

Research Starters  is a feature available when searching  DragonQuest . You may notice when you enter a generic search term into DragonQuest that a research starter is your first result.

If available, research starters appear at the top of you search results in DragonQuest.

Research Starter  entries are similar to a Wikipedia entry of the topic, but  Research Starters  are pulled from quality sources such as Salem Press, Encyclopedia Britannica, and American National Biography.  Research Starters  can be a great place to begin your research, if you're not yet sure about your topic details.  There are several Research Starters related to the steps of the scientific method:

  • Scientific method
  • Research methodology
  • Research methods

Using Research Starters

To use  Research Starters,  click on the title just as you would for any other  DragonQuest  entry. You will then find a broad overview of the topic. This entry is great for finding

  • Subtopics that can narrow your searching
  • Background information to support your claims
  • Sources you can use and cite in your research

We do not recommend that you use  Research Starters  as a source itself though, because of the difficulties in citation.

Citing Research Starters

Using  Research Starters  as an actual source is not recommended.

Just as we do not recommend using Wikipedia as a source,  Research Starters  is the same. Use  Research Starters  as a starting point to get ideas about how to narrow your search and to use its bibliography to find sources you can cite.

We recommend this because citing  Research Starters  can be tricky as sometimes it will have insufficient bibliographic data to create your reference page.

To begin the scientific method, you have to observe something and identify a problem.  You can observe basically anything, such as a person, place, object, situation, or environment.  Examples of an observation include:

  • "My cotton shirt gets more wet in the rain than my friend's silk shirt."
  • "I feel more tired after eating a cookie than I do after eating a salad."

Once you have made an observation, it will lead to creating a scientific question (Larson, 2015).  The question focuses on a specific part of your observation:

  • Why does a cotton shirt get more wet in the rain than a silk shirt?
  • Why do I more tired after eating a cookie than if I ate a salad?

Scientific questions lead to research and crafting a hypothesis, which are the next steps in the scientific method.  Watch the video below for more information on observations.

Once you identify a topic and question from your observations, it is time to conduct some preliminary research.  It is meant to locate a potential answer to your research question or give you ideas on how to draft your hypothesis.  In some cases, it can also help you design an experiment once you determine your hypothesis.  It is a good idea to research your topic or problem using the library and/or the Internet.  It is also recommended to check out different source types for information, such as:

  • Academic journals
  • News reports
  • Audiovisual media (radio, podcasts, etc.)

Background Information

It is important to gather lots of background information on your topic or problem so you understand the topic thoroughly.  It is also critical to find and understand what others have already written about your research question.  This prevents you from experimenting on an issue that already has a definitive answer.

If you need assistance in conducting preliminary research, view our guide on locating background information at the bottom of this box.

If you are unsure where you should start researching, you can view our list of science databases through our  A-Z database list  by selecting "Science" from the subjects dropdown menu.  We also have several research guides that cover topics in the sciences, which can be viewed on our Help page.

Not sure where to begin your research?  Try searching a database in our A-Z list or using one of our  EBSCOhost databases !

  • Finding Background Information by Pfeiffer Library Last Updated Jul 10, 2024 97 views this year

When you have gathered enough information on your research question and determined that your question has not already been answered, you can form a hypothesis.  A hypothesis is an educated guess or possible explanation meant to answer your research question.  It often follows the "if, then..." sentence structure because it explains a cause/effect relationship between two variables.  A hypothesis is supposed to form a relationship between the two variables.

  • Example hypothesis: "If I soak a penny in lemon juice, then it will look cleaner than if I soak it in soap."

In this example, it is explaining a relationship between a penny and different cleaning agents.  While crafting your hypothesis, it is important to make sure that your "then" statement is something that can be measured, either quantitatively or qualitatively.  In the above example, an experiment for the hypothesis would be measuring the cleanliness of the penny after being exposed to either soap or lemon juice.

For more information on hypotheses, view DragonQuest's Research Starter on hypotheses here .  Alternatively, you can watch the video below for more details on crafting hypotheses.

The fourth step in the scientific method is the experiment stage.  This is where you craft an experiment to test your hypothesis.  The point of an experiment is to find out how changing one thing impacts another (Larson, 2015).  To test a hypothesis, you must implement and change different variables in your experiment.

Anything that you modify in an experiment is considered a variable.  There are two types of variables:

  • Independent variable:  The variable that is modified in an experiment so that is has a direct impact on the dependent variable.  It is the variable that you control in the experiment (Larson, 2015).
  • Dependent variable:  The variable that is being tested in an experiment, whose measure is directly related to the change of the independent variable (the dependent variable is dependent on the independent variable).  This is what you measure to prove or disprove your hypothesis.

Every experiment must also have a control group , which is a variable that remains unchanged for the duration of the experiment (Larson, 2015).  It is used to compare the results of the dependent variable.  In the case of the sample hypothesis above, a control variable would be a penny that does not receive any cleaning agent.

Research Methods

There are several ways to conduct an experiment.  The approach you take is dependent on your own strengths and weaknesses, the nature of your topic/hypothesis, and the resources you have available to conduct the experiment.  If you are unsure as to what research method you would like to use for your experiment, you can view our research methodologies guide below.  DragonQuest also has a Research Starter on research methods, located  here .

  • Research Methodologies by Pfeiffer Library Last Updated Aug 2, 2022 58484 views this year

When designing your experiment:

  • Make a list of materials that you will need to conduct your experiment.  If you will need to purchase additional materials, create a budget.
  • Consider the best locations for your experiment, especially if outside factors (weather, etc.) may effect the results.
  • If you need additional funding for an experiment, it is recommended to consider writing a research proposal for the entity from which you want to receive funding.  You can view our guide on writing research proposals below.

You can also watch the video below to learn more about designing experiments.  Or, you can view DragonQuest's Research Starter on experiments here .

  • Writing a Research Proposal by Pfeiffer Library Last Updated May 22, 2023 30129 views this year

When conducting your experiment:

  • Record or write down your experimental procedure so that each variable it tested equally.  It is likely that you will conduct your experiment more than once, so it is important that it is conducted exactly the same each time (Larson, 2015).
  • Be aware of outside factors that could impact your experiment and results.  Outside factors could include weather patterns, time of day, location, and temperature.
  • Wear protective equipment to keep yourself safe during the experiment.
  • Record your results on a transferrable platform (Google Spreadsheets, Microsoft Excel, etc.), especially if you plan on running statistical analyses on your data using a computer program.  You should also back your data up electronically so you do not lose it!
  • Use a table or chart to record data by hand.  The x-axis (row) of a chart should represent the independent variable, while the y-axis (column) should represent the dependent variable (Riverside Local Schools, n.d.).
  • Be prepared for unexpected results.  Some experiments can unexpectedly "go wrong" resulting in different data than planned.  Do not feel defeated if this happens in your experiment!  Once the tests are completed, you can analyze and determine why the experiment went differently.

Before arriving at a conclusion, you must look at all your evidence and analyze it.  Data analysis is "the process of interpreting the meaning of the data we have collected, organized, and displayed in the form of a chart or graph" (Riverside Local Schools, p. 1.).  If you did not create a graph or chart while recording your data, you may choose to create one to analyze your results.  Or, you may choose to create a more elaborate chart from the one you used in the experiment.  Graphs and charts organize data so that you can easily identify trends or patterns.  Patterns are similarities, differences, and relationships that tell you the "big picture" of an experiment (Riverside Local Schools, n.d.).

Questions to Consider

There are several things to consider when analyzing your data:

  • What exactly am I trying to discover from this data?
  • How does my data relate to my hypothesis?
  • Are there any noticeable patterns or trends in the data?  If so, what do these patterns mean?
  • Is my data good quality?  Was my data skewed in any way?
  • Were there any limitations to retrieving this data during the experiment?

Once you have identified patterns or trends and considered the above questions, you can summarize your findings to draw your final conclusions.

Drawing conclusions is the final step in the scientific method.  It gives you the opportunity to combine your findings and communicate them to your audience.  A conclusion is "a summary of what you have learned from the experiment" (Riverside Local Schools, p. 1).  To draw a conclusion, you will compare your data analysis to your hypothesis and make a statement based on the comparison.  Your conclusion should answer the following questions:

  • Was your hypothesis correct?
  • Does my data support my hypothesis?
  • If your hypothesis was incorrect, what did you learn from the experiment?
  • Do you need to change a variable if the experiment is repeated?
  • Is your data coherent and easy to understand?
  • If the experiment failed, what did you learn?

A strong conclusion should also (American Psychological Association, 2021):

  • Be justifiable by the data you collected.
  • Provide generalizations that are limited to the sample you studied.
  • Relate your preliminary research (background information) to your experiment and state how your conclusion is relevant.
  • Be logical and address any potential discrepancies (American Psychological Association, 2021).

Reporting Your Results

Once you have drawn your conclusions, you will communicate your results to others.  This can be in the form of a formal research paper, presentation, or assignment that you submit to an instructor for a grade.  If you are looking to submit an original work to an academic journal, it will require approval and undergo peer-review before being published.  However, it is important to be aware of predatory publishers.  You can view our guide on predatory publishing below.

  • Predatory Publishing by Pfeiffer Library Last Updated Aug 2, 2023 722 views this year
  • << Previous: Welcome
  • Next: Scientific Method Resources >>
  • Last Updated: May 16, 2024 4:20 PM
  • URL: https://library.tiffin.edu/thescientificmethod

An official website of the United States government

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List

How to write an introduction section of a scientific article?

Abdullah armağan.

  • Author information
  • Article notes
  • Copyright and License information

Correspondence: Abdullah Armağan, Department of Urology, Faculty of Medicine, Bezmialem Vakıf University, 34080 İstanbul, Turkey, Phone: +90 212 453 17 00-5825, E-mail: [email protected]

Received 2013 Feb 27; Accepted 2013 Apr 30.

An article primarily includes the following sections: introduction, materials and methods, results, discussion, and conclusion. Before writing the introduction, the main steps, the heading and the familiarity level of the readers should be considered. Writing should begin when the experimental system and the equipment are available. The introduction section comprises the first portion of the manuscript, and it should be written using the simple present tense. Additionally, abbreviations and explanations are included in this section. The main goal of the introduction is to convey basic information to the readers without obligating them to investigate previous publications and to provide clues as to the results of the present study. To do this, the subject of the article should be thoroughly reviewed, and the aim of the study should be clearly stated immediately after discussing the basic references. In this review, we aim to convey the principles of writing the introduction section of a manuscript to residents and young investigators who have just begun to write a manuscript.

Keywords: Article, introduction, scientific

Introduction

When entering a gate of a magnificent city we can make a prediction about the splendor, pomposity, history, and civilization we will encounter in the city. Occasionally, gates do not give even a glimpse of the city, and it can mislead the visitors about inner sections of the city. Introduction sections of the articles are like gates of a city. It is a presentation aiming at introducing itself to the readers, and attracting their attention. Attractiveness, clarity, piquancy, and analytical capacity of the presentation will urge the reader to read the subsequent sections of the article. On the other hand as is understood from the motto of antique Greek poet Euripides “a bad beginning makes a bad ending”, ‘Introduction’ section of a scientific article is important in that it can reveal the conclusion of the article. [ 1 ]

It is useful to analyze the issues to be considered in the ‘Introduction’ section under 3 headings. Firstly, information should be provided about the general topic of the article in the light of the current literature which paves the way for the disclosure of the objective of the manuscript. Then the specific subject matter, and the issue to be focused on should be dealt with, the problem should be brought forth, and fundamental references related to the topic should be discussed. Finally, our recommendations for solution should be described, in other words our aim should be communicated. When these steps are followed in that order, the reader can track the problem, and its solution from his/her own perspective under the light of current literature. Otherwise, even a perfect study presented in a non-systematized, confused design will lose the chance of reading. Indeed inadequate information, inability to clarify the problem, and sometimes concealing the solution will keep the reader who has a desire to attain new information away from reading the manuscript. [ 1 – 3 ]

First of all, explanation of the topic in the light of the current literature should be made in clear, and precise terms as if the reader is completely ignorant of the subject. In this section, establishment of a warm rapport between the reader, and the manuscript is aimed. Since frantic plunging into the problem or the solution will push the reader into the dilemma of either screening the literature about the subject matter or refraining from reading the article. Updated, and robust information should be presented in the ‘Introduction’ section.

Then main topic of our manuscript, and the encountered problem should be analyzed in the light of the current literature following a short instance of brain exercise. At this point the problems should be reduced to one issue as far as possible. Of course, there might be more than one problem, however this new issue, and its solution should be the subject matter of another article. Problems should be expressed clearly. If targets are more numerous, and complex, solutions will be more than one, and confusing.

Finally, the last paragraphs of the ‘Introduction’ section should include the solution in which we will describe the information we generated, and related data. Our sentences which arouse curiosity in the readers should not be left unanswered. The reader who thinks to obtain the most effective information in no time while reading a scientific article should not be smothered with mysterious sentences, and word plays, and the readers should not be left alone to arrive at a conclusion by themselves. If we have contrary expectations, then we might write an article which won’t have any reader. A clearly expressed or recommended solutions to an explicitly revealed problem is also very important for the integrity of the ‘Introduction’ section. [ 1 – 5 ]

We can summarize our arguments with the following example ( Figure 1 ). The introduction section of the exemplary article is written in simple present tense which includes abbreviations, acronyms, and their explanations. Based on our statements above we can divide the introduction section into 3 parts. In the first paragraph, miniaturization, and evolvement of pediatric endourological instruments, and competitions among PNL, ESWL, and URS in the treatment of urinary system stone disease are described, in other words the background is prepared. In the second paragraph, a newly defined system which facilitates intrarenal access in PNL procedure has been described. Besides basic references related to the subject matter have been given, and their outcomes have been indicated. In other words, fundamental references concerning main subject have been discussed. In the last paragraph the aim of the researchers to investigate the outcomes, and safety of the application of this new method in the light of current information has been indicated.

Figure 1.

An exemplary introduction section of an article

Apart from the abovementioned information about the introduction section of a scientific article we will summarize a few major issues in brief headings

Important points which one should take heed of:

Abbreviations should be given following their explanations in the ‘Introduction’ section (their explanations in the summary does not count)

Simple present tense should be used.

References should be selected from updated publication with a higher impact factor, and prestigous source books.

Avoid mysterious, and confounding expressions, construct clear sentences aiming at problematic issues, and their solutions.

The sentences should be attractive, tempting, and comjprehensible.

Firstly general, then subject-specific information should be given. Finally our aim should be clearly explained.

  • 1. Day RA. In: How to Write and Publish a Scientific Paper. 4. Edition. Altay Gülay Aşkar., translator. Tübitak Yayınları; 2000. [ Google Scholar ]
  • 2. Hengl T, Gould M. Enschede. Sep, 2002. Rules of thumb for writing research articles. [ Google Scholar ]
  • 3. Day AD. How to write a scientific paper. IEEE transactions on professional communication; 1977. pp. 32–7. [ Google Scholar ]
  • 4. DeMaria AN. How do I get a paper accepted? J Am Coll Cardiol. 2007;49:1666–7. doi: 10.1016/j.jacc.2007.03.017. [ DOI ] [ PubMed ] [ Google Scholar ]
  • 5. Vernon Booth: Writing a scientific paper. Biochem Soc. 1975;3:1–26. doi: 10.1042/bst0030001. [ DOI ] [ PubMed ] [ Google Scholar ]
  • View on publisher site
  • PDF (218.9 KB)
  • Collections

Similar articles

Cited by other articles, links to ncbi databases.

  • Download .nbib .nbib
  • Format: AMA APA MLA NLM

Add to Collections

  • Skip to main content
  • Keyboard shortcuts for audio player

1A

  • LISTEN & FOLLOW
  • Apple Podcasts
  • Amazon Music

Your support helps make our show possible and unlocks access to our sponsor-free feed.

Scientific Method: The Secrets Of Our Circadian Rhythms

in the scientific method a hypothesis is a what

A man takes a nap on the Bryant Park Lawn in midtown New York City. TIMOTHY A. CLARY/AFP via Getty Images hide caption

A man takes a nap on the Bryant Park Lawn in midtown New York City.

If you've ever travelled to a different time zone, you probably felt groggy and tired after your flight. Or you've likely missed that extra hour when the clock jumps forward for Daylight Savings time in the spring.

You may work a 9-to-5 job or go to school from 8 a.m. to 3:15 p.m. But these aren't the only clocks that dictate how we live.

In fact, our bodies have trillions of internal clocks that tell us when to eat, sleep, and perform other biological tasks throughout the day. One of those clocks is our circadian rhythm.

In a society where staring at our phones before falling asleep or getting up with an alarm clock is the norm, most of us are out of sync with our circadian rhythm. But there are serious health consequences to this disconnect.

In this installment of "The Scientific Method," we talk about how our circadian rhythm works. How can we live in sync with it? What happens when we're not in sync?

Find more of our programs online . Listen to 1A sponsor-free by signing up for 1A+ at plus.npr.org/the1a .

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 31 October 2024

Long-term snow-track indices of a Finnish native mesopredator declined while those of an invasive one increased

  • Vesa Selonen 1 ,
  • Pyry Toivonen 1 &
  • Andreas Lindén 2  

Scientific Reports volume  14 , Article number:  26190 ( 2024 ) Cite this article

Metrics details

  • Boreal ecology
  • Invasive species

Monitoring both native and invasive species is crucial for understanding their ecological impacts. However, obtaining reliable data can be challenging, especially for elusive species like mesopredators. This study utilized snow-track surveys in Finland (1989–2022) to examine population trends of the invasive raccoon dog and the native red fox. While raccoon dogs are known to reduce activity during cold weather, we demonstrated that accounting for temperature and snowfall allows for effective population trend estimation using snow-track data. Track accumulation decreased in cold and snowy weather more clearly for raccoon dogs than for red foxes. We also found that the track accumulation of the raccoon dog had significantly increased, while those of the red fox population had declined, particularly in southern parts of the country. Notably, raccoon dog snow-track numbers increased in northern regions, suggesting a potential for further range expansion under a warming climate. These findings reveal a concerning shift in Finland’s mesopredators abundance due to the invasive species’ success and the decline of the native species. Thus, the invasive raccoon dog is likely to have an increasing role in those northern ecosystems where it interacts with the native fauna.

Similar content being viewed by others

in the scientific method a hypothesis is a what

Decline of the boreal willow grouse ( Lagopus lagopus ) has been accelerated by more frequent snow-free springs

in the scientific method a hypothesis is a what

Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains

in the scientific method a hypothesis is a what

Terrestrial mesopredators did not increase after top-predator removal in a large-scale experimental test of mesopredator release theory

Introduction.

Estimating population abundances and trends is a crucial instrument in wildlife management and forms the basis for many management decisions 1 , 2 . These measures are needed to assess a population’s status and for choosing appropriate measures to support a healthy ecosystem and mitigate the declining of populations. On the other hand, data on population estimates can reveal the need for pest or predator control measures. Especially when dealing with invasive species with the potential to negatively affect or compete with local native species 3 .

Reliable estimation of occurrence patterns, such as population trends of a species, may not be a straightforward task. For example, the monitoring of mammalian mesopredators is complicated due to their nocturnal and secretive living habits 4 , 5 . This is the case for the raccoon dog ( Nyctereutes procyonoides ), which is the most common invasive mesopredator in large parts of Europe 3 , 6 . Raccoon dogs were introduced to the former Western Soviet Union for fur production from their original range in East Asia from. Since then, raccoon dogs have been called one of the most successful alien carnivores introduced to Europe 6 . The raccoon dog is an important predator of ground nesting birds and amphibians 7 , 8 , 9 . The expansion of raccoon dogs is also problematic from the perspective of the spread of zoonotic diseases and parasites 6 , 10 . Climate change is likely to further facilitate the spread of this species, as harsh winters are assumed to be a limiting factor to their habitable area 11 .

Mesopredator species ecologically comparable to the raccoon dog in northern and central Europe are the red fox ( Vulpes vulpes ) and the European badger ( Meles meles ) 6 . These three species, together with smaller carnivores such as the pine marten ( Martes martes ) form the mesopredator community in northern Europe. There are not necessarily antagonistic interactions between these species 12 , but through interspecific competition, the presence of the newcomer has the potential to negatively affect the native populations. Certainly, the invasive raccoon dog adds to the exploitation of common food sources. Assessments of raccoon dog population numbers have previously included surveys of hunting bag and roadkill numbers 6 . However, these methods often fail to provide an accurate view of population trends or distribution. Instead, snow-track surveys are commonly used to estimate indices of predator abundances 1 , 13 , 14 , 15 , 16 . Snow-track data can provide credible approximations of animal abundance and are useful for inferring population dynamics of species 13 , 17 , 18 , but see 14 for a contrary discussion. However, it is important to acknowledge that such data are affected by both species’ density and activity.

The index for red fox abundance is assessed annually in Finland with snow-track data collected in the wildlife triangle scheme (Natural Resources Institute Finland, Luke 19 ). This snow-track survey scheme includes also tracks of badgers and raccoon dogs, but for the badger snow-track surveys are a poor method for indexing badger populations because they mostly sleep during the boreal winter 20 . The raccoon dog’s wintering strategy includes alternating periods of physical activity and passivity 10 , 21 . That is, it can exhibit passive overwintering by winter sleep, which will decrease the snow-track accumulation. However, the species maintain some degree of winter activity even in very cold weather 10 , 22 . This suggests that snow-track data may be used to analyze occurrence of raccoon dogs, as long as weather variables are controlled for.

In this study, we utilized data from two type of annual snow-track surveys from the Finnish wildlife triangle scheme: (1) from surveys in landscapes of mix of agricultural and forested areas, hereafter referred to as “field triangles” and (2) from surveys in purely forest dominated landscapes, hereafter referred to as “forest triangles”. We, first, estimate the population trends for the invasive raccoon dog and the native red fox, and compare the results. We then predicted that: (i) snow-track numbers would remain lower for raccoon dogs compared to red foxes, especially under cold and snowy conditions, due to the raccoon dog’s reduced winter activity 22 ; (ii) track numbers for both raccoon dogs and red foxes would be higher in field triangles, as these areas are located in more productive land than forested areas; and (iii) snow-track indices for both species would decrease in colder climates (i.e., in northern regions), but especially so for the raccoon dog which is abundant in southern Finland 23 . Additionally, we expect that warmer temperatures will more significantly increase track numbers in the northern parts of the study area compared to the south. The harsh climate in the north likely limits the activity of these species, particularly raccoon dogs, while higher temperatures may facilitate increased activity in these regions.

Red fox produced tracks over the whole country but raccoon dog tracks were not observed in the northern parts of study area above 67.5°N (Fig.  1 ). The total count of snow-tracks was 48,980 for the red fox ( n  = 3,509 triangle surveys; i.e., combinations of triangle ID and year) and 5,068 for the raccoon dog ( n  = 3,064 triangle surveys) for the field triangle data. For the forest triangle data, the count of snow-tracks was 173,446 for red fox ( n  = 23,455 triangle surveys) and 8,272 for raccoon dog ( n  = 14,068 triangle surveys).

figure 1

The distribution of the surveyed snow-track data. The black circles are sites with data for both species and triangles include data only for the red fox (all, except one site, reported tracks of red fox at least once). The cases without snow tracks are in red circles, which, in practice, are sites without data for raccoon dog. The left panel show the sites for forest triangles and the right panel shows the sites for field triangles.

Temporal trends

The snow-track indices of the raccoon dog increased over time in field triangles (on average 3.8% / year; Table  1 ). In forest triangles, a clear increase was recorded only in the northern boreal zone (change 6.9% / year; Table  3 ; Fig.  2 ), the average change over all zones being 2.0% / year.

figure 2

Raccoon dog and red fox predicted snow-track index (tracks / 10 km / day; shadowed areas are 95% confidence intervals) over time in forest and field triangles in different boreal zones in Finland.

The snow-track indices of the red fox decreased over time in forest triangles in all vegetation zones except for the northern boreal zone (Table  4 ; Fig.  2 ), the average change over all zones being −2.2% / year. In field triangles, the red fox snow-track indices decreased in the hemiboreal zone (change −2.7% / year; Table  2 ; Fig.  2 ), the overall change being −1.3% / year.

Track numbers

Field triangles produced more tracks of red foxes than forest triangles, but for raccoon dogs the difference was not very clear (Figs.  2 and 3 ). Both the field triangles and forest triangles had more red fox snow tracks than raccoon dog snow tracks (Figs.  2 and 3 ). Overall model predicted average (± SD) track numbers in field triangles were 1.6 ± 2.3 and 14.6 ± 11.8, and in forest triangles were 0.6 ± 1.1 and 8.0 ± 7.7 tracks / day / 10 km, for the raccoon dog and the red fox, respectively. Snow-track indices decreased towards the north for both species (Tables  1 , 2 , 3 and 4 ).

figure 3

Effects of temperature (upper two panels, shown for each boreal zone) and snow depth (lowest panel) on raccoon dog and red fox snow-track indices in forest and field triangles, illustrated as predicted snow-track indices (tracks / 10 km / day; shadowed areas are 95% confidence intervals). The prediction for snow is shown for the Southern Boreal zone (snow had nonsignificant interaction with zone, that is, zones have identical slopes for the prediction).

Responses to weather variables

The snow-track indices for the raccoon dog decreased considerably with colder temperature and more snow in both data sets (Tables  1 and 3 ). In both data sets, the track index became low when there were > 50 cm snow and temperatures −10°C or colder (Fig.  3 ). Overall, for raccoon dog, temperature was a more powerful predictor than snow depth, although both contributed to explaining variation in the snow-track indices.

For the red fox, no effect of temperature was detected for field triangles, while snow-track indices slightly increased in forest triangles during colder weather in southern parts of the country (Tables  2 and 4 ; Fig.  3 ), contrasting with the strong effects of colder temperatures observed in raccoon dog snow track indices. Similarly to raccoon dogs, deeper snow decreased snow-track indices in red fox (Tables  2 and 4 ; Fig.  3 ). The negative effect of snow depth did not differ between the species in field triangles (difference in slopes = −0.13, SE = 0.091, Z = −1.41, p  = 0.15), but was clearer for raccoon dogs than red foxes in forest triangles (difference in slopes = −0.30, SE = 0.038, Z = −8.17, p  < 0.001).

We did not observe the predicted stronger effect of weather variables in the north than in the south. On the contrary, the result was the opposite for the raccoon dog as the effect of temperature on snow-track numbers was weaker in north than in south (interaction Temperature*Zone in Tables  1 and 3 ; Fig.  3 ).

Based on long-term snow-track surveys of Finnish mesopredators, we observed a declining trend for the native red fox, and an increasing trend for the invasive raccoon dog. The temporal trends, however, varied across the country. The raccoon dog was absent from northern parts of the study area in the subarctic region, but showed an increasing population trend near those areas. Supporting our predictions, there were fewer tracks in forest triangles than in field triangles and the track numbers declined in the north. The raccoon dog also produced clearly fewer snow-tracks than the red fox, as we expected. The raccoon dog produced clearly fewer snow tracks in cold and snowy weather, but still produced enough snow-track data to analyze temporal trends and provide proxies for regional abundance between vegetation zones. Contrary to our prediction, the response to weather variables were not stronger in harsh northern climate than in milder southern parts of the study.

Our results indicated that the invasive raccoon dog population is still expanding, especially in the northern boreal zone near the species’ invasion front. This is despite strong control measures (hunting) of raccoon dogs in these areas, as Finnish and Swedish wildlife managers aim to prevent the expansion to the north and west 24 . Currently, the raccoon dog shows a clearly more southern distribution pattern in Finland compared to the red fox, but nevertheless, it appears to be able to live in very cold environments 21 , 22 . Thus, it can be expected to expand further north as the climate warms.

In addition to the increase in raccoon dog track numbers, our results imply that the native red fox is declining in Finland. The reason for this decline remains unclear, but also some other common native mammals show declining trends in forest landscapes in Finland. For example, Turkia et al. 25 , observed red squirrel, Sciurus vulgaris (potential prey for red foxes), declines over large areas in boreal forests. They linked the decline to warming climate, although increased forest management may also play a role. Regarding our data, the declining trend of the red fox appeared clearer in forest triangles than in field triangles. The field triangles were in landscapes with a mixture of agriculture and forests, and those areas might provide more stable food resources for red foxes than pure forests 17 . Changes in prey species communities are expected to affect red fox population dynamics and might thus be related to declining population trends 26 , 27 . For example, voles are important prey for red foxes and their abundances fluctuate cyclically. There were irregularities in these cycles in the 1990s, but the cyclicity may have partially returned since then 28 . Apex predators, such as wolf, Canis lupus , kill mesopredators and have increased in Finland in recent decades, but previous analyses indicate that raccoon dogs may be more negatively affected by apex predator presence compared to red foxes 29 , see also 30 . Red foxes and raccoon dogs both benefit from carrion produced by apex predators 31 ; for a review on the factors affecting red fox abundance see e.g 32 . In general, in Europe, the red fox increased after rabies control in the 1980s but also due to changes in landscape structure 33 , 34 . After that, the red fox populations in western and central Europe have been mainly stable or slightly increased 34 , 35 (see also e.g 36 ). although opposite examples also exist 34 . In Scandinavia, the red fox population increased in the 20th century 31 , but results for recent decades are less clear, but see 36 . In hunting statistics of Finland, the number of red foxes killed has been declining from 50,000 to 60,000 to 40,000–50,000 individuals killed yearly during 1996–2022. Instead, during the same time period raccoon dog hunting bag has been about double that of red fox, increasing from 50,000 to 100,000 to about 150,000 killed individuals yearly (data by Natural Resources Institute Finland). That is, the hunting pressure does not seem to explain the trends observed in the current study. Instead, they seem to show the same trend as we observed.

The red fox decline was clearer in the south than in the north. The reason for this pattern remains unknown. The density of the raccoon dog is high in the southern Finland 23 , but the possibility for competition between these two species remains unclear. Drygala and Zoller 37 concluded that differences in space use likely prevent competition between red foxes and raccoon dogs in the agricultural landscape of northeast Germany. Food niche overlap studies suggest also that these mesopredators can coexist 12 , 38 and Kowalczyk and Zalewski 39 concluded that there is no evidence for nest competition. However, both species do utilize similar sites for nesting 6 , which could create the possibility for nest competition if nest sites are scarce. Usage of the same nest sites also increases the transmission of diseases from raccoon dogs to red foxes. The population size of the latter is known to potentially be affected by sarcoptic mange 26 , 40 , which is spread by raccoon dogs. A simulation study indicated that raccoon dogs, when reaching high density, could outcompete native red foxes 41 . Additionally, Kauhala 42 claimed that the red fox population started to increase when that of the raccoon dog decreased due to intensive hunting in a study area in Finland. Thus, more research on the interspecific interaction between these mesopredators, an invasive and a native one, would be needed. In particular, this may be relevant in areas where the density of the raccoon dog is already above that of the red fox 23 .

The forest triangles had lower snow-track indices of red foxes compared to field triangles. This is according to our prediction and likely related to the fact that forest-dominated landscapes are less productive than agriculture-dominated landscapes. For the raccoon dog, the difference in track numbers between forest and field triangles was surprisingly small, although it is known that the species does not prefer purely forest-dominated areas 43 . In general, the track numbers were at quite low level for the raccoon dog and tracks were not observed in the northern parts of the study area (forest triangles; Fig.  1 ). It is known that raccoon dogs are sometimes found in these areas and are active in winter 22 . The species just remains so rare that no snow tracks were detected. The observed temporal trends remained also statistically quite weak for the raccoon dog. The changes in predicted track indices indicated clear changes in time, but there was high variation in the data, which is related to the low number of tracks for raccoon dogs.

In all parts of the country the raccoon dog produced less snow tracks than the red fox, despite the fact that the raccoon dog is the most abundant mesopredator in the southern parts of Finland 23 . It is concluded that for estimating carnivore abundances snow tracking is the most efficient approach to detect winter-active species 44 , but it is important to acknowledge that such data hold information about both species’ density and activity. In our case, the track numbers do not reliably reflect average differences in the abundance of the studied species, but are much determined by the lowered winter activity of the raccoon dog. Even in moderate winter conditions, we suggest that the production of snow tracks in raccoon dogs remains at a lower level than in species that are active the whole winter, such as the red fox. It should be also noted that the data we used are citizen science data, although produced by trained volunteers. The raccoon dog inhabited the whole country, including the northern parts, already in 1950s 6 . That is, before the start of the used snow-track survey scheme, the raccoon dog had been present in the whole study area for over 40 years. Thus, the species is well known by the persons doing the surveys thorough the country and it seems unlikely that there would be relevant biases in reporting that would affect the observed trends in this study. The snow tracks of these two species are also relatively easy to separate from each other.

Responses to weather

The climate is expected to be the main factor controlling the raccoon dog expansion 11 , 45 . However, based on current and earlier results 21 , 46 , 47 the species is active in quite cold weather. Its activity clearly decreases during cold nights and in mid-winter, and, in comparison, the red fox was not affected by cold temperature in our study. Similar to raccoon dogs, red fox snow-track density declined when snow depth increased, although the response was stronger in the raccoon dog. Likely, both movement and foraging become harder in deep snow 48 , decreasing snow-track accumulation. For the raccoon dog it is earlier concluded that it stays increasingly tied to the nests in winter when the temperature drops below −10℃ and the snow depth is more than 35 cm 46 . Our results support this conclusion. In any case, it is clear that the species can thrive in very snowy conditions both in the invaded range and in the species native range in southern Siberia 6 .

We predicted that the effect of weather variables would be stronger in the north than in the south. The rationale here would be that because the cold temperature and deep snow likely limit the species, this would be particularly a problem in north in harsh environment. Thus, variation in these variables would have particularly strong effect in north. However, we did not find this and actually the opposite was the case for raccoon dogs. Apparently, the winters in north remain so cold that variation in temperature less affects winter activity of the species than it affects in south. Although the climate change has warmed winter weather especially in northern Finland during recent decades 49 , this has not changed the fact that the winter in northern Finland still remains severe. Instead in south, the mild winter weather often means low amount of snow and plus degrees, which seldom is the case in northern Finland. Thus, raccoon dogs apparently increase more their activity levels in warm winter weather in south than they do in the northern Finland.

Conclusions

We conclude that snow-tracks surveys are useful in the monitoring of the invasive raccoon dog, but track accumulation strongly decreases in colder weather and deeper snow, calling for compulsory inclusion of weather covariates when studying raccoon dog snow tracks. The red fox shows weaker effects of weather, and temperature has no effect or has the opposite effect (moves more in cold conditions) compared to raccoon dog. Our results also indicate that the mesopredator community in boreal Finland has changed due to the increasing population of the invasive species and the decreasing population of the native mesopredator, the red fox. Climate change is projected to become the primary driver of biodiversity change in northern ecosystems 50 , 51 , 52 , 53 , which is likely to further benefit the raccoon dog. Thus, the invasive raccoon dog is likely to have an increasing role in boreal and (sub)arctic ecosystems where it interacts with the native fauna.

Materials and methods

Study species and study areas.

The raccoon dog is an omnivorous canid predator that weighs typically 5 kg in early summer and about 9 kg in autumn before winter sleep 54 . It is monogamous, dens in pairs and can produce litters of up to nine offspring each year, starting at the age of one year. Raccoon dogs invaded Finland from the Soviet Union in the 1950s, and its current range covers most of the country except for the northern parts of Lapland 6 . The raccoon dog’s European range is expanding, mainly consisting of Eastern and Northern Europe, Germany and Denmark 6 . In southern Finland, the raccoon dog may currently be the most common mesopredator 23 , but it has a more southern distribution in Finland than red foxes have 6 .

The red fox weighs typically 5–8 kg. It dens solitarily, in pairs, or in family groups, depending on food resources 55 . While also an opportunistic omnivore, the red fox tends to be more predatory than the raccoon dog, feeding more frequently on birds and small mammals 56 . Reproduction in red foxes starts at the age of one year, when they produce litters of five offspring on average 20 . The species is active during the whole winter, but the levels of activity decrease during the cold months 20 . The red fox is found throughout Finland from the hemi- and southern boreal zones of southern Finland to the northern boreal or subarctic regions in Lapland.

This study was conducted in the boreal forest-dominated landscape of Finland (Fig.  1 ). The main tree species in these mostly managed forests are Scots pine ( Pinus sylvestris ), Norway spruce ( Picea abies ), and birches ( Betula sp.). Bodies of water, agricultural areas, and bogs fragment the forest landscape. Large bog areas are found mainly in the northern parts of the country. Agricultural areas and urban areas are found more in southwestern and southern Finland, but occur sparsely throughout the whole country.

Snow-track data

Snow-track data contains two types of fixed survey routes, which are shaped like equilateral triangles: (i) 3 × 4 km wildlife triangle routes in forest habitat, i.e. the “forest triangles”; and (ii) 3 × 2 km triangle routes in a mosaic-like landscape of agricultural land mixed with forests, mainly distributed along the coast, i.e. the “field triangles” 57 . Forest triangles were surveyed annually during 15th January–29th February (in north − 15th March) and field triangles 1st January–29th February. Triangle surveys have been performed in Finland each winter since 1989 for forest triangles and since 1999 for field triangles. The snow tracks of the two studied species are relatively easy to differentiate and tracking data were collected by volunteers (typically local hunters) after they were trained in track identification. Thus, misidentification was likely a problem of minimal concern but we do not have any data to confirm or dispute this. On average, the citizen-science data used included 730 forest triangles and 170 field triangles surveyed each year.

The number of animal tracks observed is typically related to the transect length surveyed and the number of days (24 h) of snow-track accumulation and is hence reported as a snow-track index (i.e., a density with the unit: tracks / 10 km / day). We used data from 1999 to 2022 for field triangles and from 1989 to 2022 for forest triangles. The snow-track survey is conducted once a year in each triangle, when possible, but very few triangles have been surveyed every year. Some triangles have been founded after the start of the monitoring scheme, some have become inactive, and there are occasionally missing years in the middle. We only included triangle routes that had data from at least 5 years and had at least one year of observations of the species of interest. After this the length of time series varied between 5 and 34 years (average 16.1, median 15) for forest triangles and 5 and 22 years (average 10.9, median 10) for field triangles.

Weather data were extracted using coordinates of each triangle from nearest interpolated grid cells (grid size 1 × 1 km 2 ) produced by the Finnish Meteorological Institute (FMI). We extracted daily data of snow depth (cm) and temperature (℃) for each survey year and then calculated the mean values from the periods of track accumulation for each survey. These periods were the time-interval between the survey (that lasted few hours) and last snowfall before the survey (covering the old tracks). We filtered data to only include the data points where the track accumulation period was at maximum 7 days (the average accumulation period length in the used data was 1.6 ± 0.9 (SD) days).

Weather data extraction from grid cells was done using the ncdf4-package v. 1.21 58 in R v. 4.2.0 59 .

We modelled the snow-track index for field triangles and forest triangles using generalized linear mixed models, with negative binomial error distribution and a logarithmic link function. The models were fitted separately for red fox and raccoon dog, and for forest and field triangles, the dependent variable being the number of snow tracks per triangle per survey identified to originate from the focal species.

As an offset variable, we applied the natural logarithm of survey effort, which in turn is defined as “time for snow-track accumulation” (days) × “length of survey route” (10 km). Using this offset variable in a log link model, where the number of tracks is the response variable, is equivalent to a situation where the fixed effect (non-offset) variables describe changes in the snow-track index, with the unit: tracks / day / 10 km.

Independent variables included in the model were the average daily temperature (Celsius) and snow depth (cm) from the period of snow-track accumulation, year (continuous), and the boreal zone in which each triangle was situated (four-level factor variable, see Fig.  1 ). We included interaction terms between boreal zone and temperature in the models, but to simplify we left out the interaction between snow and boreal zone, because during initial model checking it was not significant in any of the modes. We also included the interaction of the boreal zone and year (as a continuous variable) in the models, to see whether there were differences between the temporal trends in different parts of the country. For each species, temperature and snow depth were scaled to zero mean and unit variance, for better model convergence properties. Also, continuous variable year was centered to zero mean for each species. Scaling the continuous variables over both forest- and field triangles enabled us to compare the snow-track indices under the same (average) conditions.

The data were spatially autocorrelated and to account for this in the unexplained variation of the model, we included the following factor variables: (1) wildlife agency region identity (largest spatial scale), (2) hunting association region identity (medium spatial scale) and (3) triangle identity (small spatial scale), as nested random effects on the intercept. The wildlife agency region divides Finland to 15 separate regions and the hunting association regions divide the country to 279 separate areas ( https://riista.fi/en/game-administration/ ). In addition, survey year as a factor variable was included as a separate random effect to account for unexplained temporal variation. Together, these terms account for unexplained variation in time and space, which was not explained by the rough temporal trends, variation by vegetation zones or weather. With this setting, the Moran’s I for the extracted random effects of triangle identity was close to zero (between −0.02 and 0.02 analyzed with spdep-package v. 1.3-5 60 ) indicating low level of remaining spatial autocorrelation in any of the models.

The statistical analyses were done using glmmTMB-package v. 1.1.9 61 in R v. 4.4.1 59 .

Data availability

The datasets analyzed during the current study are owned by Natural Resources Institute Finland (Luke) and are not publicly available but are available from the corresponding author on reasonable request.

Thompson, W. L., White, G. C. & Gowan, C. Monitoring Vertebrate Populations (Academic Press Inc., 1998).

Santini, G. et al. Population assessment without individual identification using camera-traps: A comparison of four methods. Basic. Appl. Ecol. 61 , 68–81 (2022).

Article   Google Scholar  

Directorate-General for Environment. European Commision - Nature and Biodiversity. Retrieved March 2022, from Invasive Alien Species. https://ec.europa.eu/environment/nature/invasivealien (2022).

Sadlier, L. M. J., Webbon, C. C., Baker, P. J. & Harris, S. Methods of monitoring red foxes Vulpes vulpes and badgers Meles meles : are field signs the answer? Mamm. Rev. 34 , 75–98 (2004).

Podgórski, T. et al. Guidance on estimation of abundance and density of wild carnivore population: methods, challenges, possibilities, EFSA Supporting Publications. https://doi.org/10.2903/sp.efsa.2020.EN- 1947, 17, 11. (2020).

Kauhala, K. & Kowalczyk, R. Invasion of the raccoon dog Nyctereutes procyonoides in Europe: history of colonization, features behind its success, and threats to native fauna. Curr. Zool. 57 , 584–598 (2011).

Article   PubMed   Google Scholar  

Holopainen, S., Väänänen, V-M., Vehkaoja, M. & Fox, A. Do alien predators pose a particular risk to duck nests in Northern Europe? Results from an artificial nest experiment. Biol. Invasions 23 , 3795–3807 (2021).

Jaatinen, K., Hermansson, I., Mohring, B., Steele, B. B. & Öst, M. Mitigating impacts of invasive alien predators on an endangered sea duck amidst high native predation pressure. Oecologia 198 , 543–552 (2022).

Article   ADS   PubMed   Google Scholar  

Tuomikoski, E., Selonen, V., Merimaa, K. & Laaksonen, T. Diet of the raccoon dog, an invasive mesopredator, during the breeding season of declining waterbird populations. Glob Ecol. Cons 51 , e02917 (2024).

Google Scholar  

Mustonen, A. M. & Nieminen, P. A review of the physiology of a survival expert of big freeze, deep snow, and an empty stomach: the boreal raccoon dog ( Nyctereutes procyonoides ). J. Comp. Physiol. B 188 , 15–25 (2018).

Melis, C. et al. Raccoon dogs in Norway - Potential expansion rate, distribution area and management implications. NTNUVitenskapsmuseet Rapp Zool. Ser. 3 , 1–49 (2007).

Drygala, F., Werner, U. & Zoller, H. Diet composition of the invasive raccoon dog ( Nyctereutes procyonoides ) and the native red fox ( Vulpes vulpes ) in north-east Germany. Hystrix 24 , 190–194 (2013).

Thompson, I. D., Davidson, I. J., O’Donnell, S. & Brazeau, F. Use of track transects to measure the relative occurrence of some boreal mammals in uncut forest and regeneration stands. Can. J. Zool. 67 , 1816–1823 (1989).

Kojola, I. et al. Tracks in snow and population size estimation: The wolf Canis lupus in Finland. Wildl. Biol. 20 , 279–284 (2014).

Krauze-Gryz, D., Jackowiak, M., Klich, D., Gryz, J. & Jasińska, K. D. Following urban predators – long-term snow-tracking data reveals changes in their abundance and habitat use. J. Zool. 323 , 213–224 (2024).

Linnell, J. D. C. et al. An evaluation of structured snow-track surveys to monitor Eurasian lynx Lynx lynx populations. Wildl. Biol. 13 , 456–466 (2007a).

Kurki, S., Nikula, A., Helle, P. & Lindén, H. Abundances of red fox and pine marten in relation to the composition of boreal forest landscapes. J. Anim. Ecol. 67 , 874–886 (1998).

Article   CAS   PubMed   Google Scholar  

Kawaguchi, T., Desrochers, A. & Bastien, H. Snow tracking and trapping harvest as reliable sources for inferring abundance: a 9-year comparison. Northeast Nat. 22 , 798–811 (2015).

Lindén, H., Helle, E., Helle, P. & Wikman, M. Wildlife triangle scheme in Finland. Methods and aims for monitoring wildlife populations. Finn Game Res. 49 , 4–11 (1996).

Lindström, E. The role of medium-sized carnivores in the Nordic boreal forest. Finnish Game Res. 46 , 53–63 (1989a).

Mustonen, A-M. et al. Application of change-point analysis to determine winter sleep patterns of the raccoon dog ( Nyctereutes procyonoides ) from body temperature recordings and a multi-faceted dietary and behavioral study of wintering. BMC Ecol. 12 , 27 (2012).

Selonen, V., Toivonen, P. & Tuomikoski, E. Invasion in cold: weather effects on winter activity of an alien mesopredator at its northern range. Eur. J. Wildl. Res. 70 , 74 (2024).

Selonen, V., Brommer, J. E., Klangwald, C. & Laaksonen, T. Successful invasion: camera trap distance sampling reveals higher density for invasive raccoon dog compared to native mesopredators. Biol. Invasions 26 , 1–10 (2024).

Dahl, F., Åhlén, P. A. & Granström, Å. The management of raccoon dogs ( Nyctereutes procyonoides ) in Scandinavia. Aliens 30 , 59–63 (2010).

Turkia, T. et al. Red squirrels decline in abundance in the boreal forests of Finland and NW Russia. Ecography 41 , 1370–1379 (2018).

Article   ADS   Google Scholar  

Lindström, E. R. et al. Disease reveals the predator: sarcoptic mange, red fox predation, and prey populations. Ecology 75 , 1042–1049 (1994).

Kjellander, P. & Nordström, J. Cyclic voles, prey switching in red fox, and roe deer dynamics – a test of the alternative prey hypothesis. Oikos 101 , 338–344 (2003).

Brommer, J. E. et al. The return of the vole cycle in southern Finland refutes the generality of the loss of cycles through ‘climatic forcing’. Global Change Biol. 16 , 577–586 (2010).

Selonen, V. et al. Invasive species control with apex predators: increasing presence of wolves is associated with reduced occurrence of the alien raccoon dog. Biol. Invasions 24 , 3461–3474 (2022).

Wikenros, C. et al. Fear or food – abundance of red fox in relation to occurrence of lynx and wolf. Sci. Rep. 7 , 9059 (2017).

Selås, V. & Vik, J. O. Possible impact of snow depth and ungulate carcasses on red fox ( Vulpes vulpes ) populations in Norway, 1897–1976. J. Zool. 269 , 299–308 (2006).

Elmhagen, B. et al. Homage to Hersteinsson and Macdonald: climate warming and resource subsidies cause red fox range expansion and Arctic fox decline. Polar Res. 36 , supl1 (2017).

Panek, M. & Bresiński, W. Red fox Vulpes vulpes density and habitat use in a rural area of western Poland in the end of 1990s, compared with the turn of 1970s. Acta Theriol. 47 , 433–442 (2002).

Delcourt, J., Brochier, B., Delvaux, D., Vangeluwe, D. & Poncin, P. Fox Vulpes vulpes population trends in Western Europe during and after the eradication of rabies. Mam Rev. 52 , 343–359 (2022).

Krauze-Gryz, D. & Gryz, J. Den-Dwelling Carnivores in Central Poland: Long-Term Trends in Abundance and Productivity. Diversity 15 , 1 (2022).

Carricondo-Sanchez, D. et al. Spatial and temporal variation in the distribution and abundance of red foxes in the tundra and taiga of northern Sweden. Eur. J. Wildl. Res. 62 , 211–218 (2016).

Drygala, F. & Zoller, H. Spatial use and interaction of the invasive raccoon dog and the native red fox in Central Europe: competition or coexistence? Eur. J. Wildl. Res. 59 , 683–691 (2013).

Kauhala, K., Laukkanen, P. & von Rege, I. Summer food composition and food niche overlap of the raccoon dog, red fox and badger in Finland. Ecography 21 , 457–463 (1998).

Kowalczyk, R. & Zalewski, A. Adaptation to cold and predation—shelter use by invasive raccoon dogs Nyctereutes procyonoides in Białowieża Primeval Forest (Poland). Eur. J. Wildl. Res. 57 , 133–142 (2011).

Willebrand, T., Samelius, G., Walton, Z., Odden, M. & Englund, J. Declining survival rates of red foxes Vulpes vulpes during the first outbreak of sarcoptic mange in Sweden. Wildl Biol 2022: e01014 (2022).

Singer, A., Kauhala, K., Holmala, K. & Smith, G. C. Rabies in northeastern Europe: the threat from invasive raccoon dogs. J. Wildl. Dis. 45 , 1121–1137 (2009).

Kauhala, K. Removal of medium-sized predators and the breeding success of ducks in Finland. Folia Zool. 53 , 367–378 (2004).

Kauhala, K. & Auttila, M. Habitat preferences of the native badger and the invasive raccoon dog in southern Finland. Acta Theriol. 55 , 231–240 (2010).

Gompper, M. E. et al. A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildl. Soc. Bull. 34 , 1142–1151 (2006).

Fløjgaard, C., Morueta-Holme, N., Skov, F., Madsen, A. B. & Svenning, J. C. Potential 21st century changes to the mammal fauna of Denmark – implications of climate change, land-use, and invasive species. IOP Conf. Ser: Earth Environ. Sci. 8 , 012016 (2009).

Kauhala, K., Holmala, K. & Schregel, J. Seasonal activity patterns and movements of the raccoon dog, a vector of diseases and parasites, in southern Finland. Mamm. Biol. 72 , 342–353 (2007).

Jasiulionis, M., Stirkė, V. & Balčiauskas, L. The Distribution and Activity of the Invasive Raccoon Dog in Lithuania as Found with Country-Wide Camera Trapping. Forests 14 , 1328 (2023).

Willebrand, T. et al. Snow tracking reveals different foraging patterns of red foxes and pine martens. Mamm. Res. 62 , 331–340 (2017).

Ruosteenoja, K., Jylhä, K. & Kämäräinen, M. Climate projections for Finland under the RCP forcing scenarios. Geophysica 51 , 17–50 (2016).

Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287 , 1770–1774 (2000).

Article   ADS   CAS   PubMed   Google Scholar  

Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325 , 1355–1358 (2009).

Legagneux, P. et al. Arctic ecosystem structure and functioning shaped by climate and herbivore body size. Nat. Clim. Change 4 , 379–383 (2014).

Stoessel, M., Elmhagen, B., Vinka, M., Hellström, P. & Angerbjörn, A. The fluctuating world of a tundra predator guild: bottom-up constraints overrule top-down species interactions in winter. Ecography 42 , 488–499 (2019).

Kauhala, K. Growth, size, and fat reserves of the raccoon dog in Finland. Acta Theriol. 38 , 139–150 (1993).

Lindström, E. Food limitation and social regulation in a red fox population. Ecography 12 , 70–79 (1989b).

Dell’Arte, G. A., Laaksonen, T., Norrdahl, K. & Korpimäki, E. Variation in the diet composition of a generalist predator, the red fox, in relation to season and density of main prey. Acta Oecol. 31 , 276–281 (2007).

Pellikka, J., Rita, H. & Lindén, H. Monitoring wildlife richness—Finnish applications based on wildlife triangle censuses. Ann. Zool. Fenn 42 , 123–134 (2005).

Pierce, D. _ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files_. R package version 1.21. https://CRAN.R-project.org/package=ncdf4 (2023).

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).

Bivand, R. R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data. Geographical Anal. 54 , 488–518 (2022).

Brooks, B. E. et al. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 9 , 378–400 (2017).

Download references

Acknowledgements

This work could not be possible without the work by voluntaries making the snow-track censuses. Mitja Denac and Elina Tuomikoski helped with data management.

The study was funded by Finnish Ministry of Agriculture and Forestry (Sotka-project) and Research Council of Finland (project no. 357199 and 357200 to VS and AL, respectively). Open Access funding provided by University of Turku (UTU) including Turku University Central Hospital.

Author information

Authors and affiliations.

Department of Biology, University of Turku, Yliopistonmäki, Vesilinnantie 5, Turku, FI-20014, Finland

Vesa Selonen & Pyry Toivonen

Natural Resources Institute Finland, Helsinki, FI-00790, Finland

Andreas Lindén

You can also search for this author in PubMed   Google Scholar

Contributions

VS and AL conceived the idea. PT, and AL analyzed the data and produced figures. VS led the writing of the manuscript, and all the authors contributed to writing and gave final approval for the publication.

Corresponding author

Correspondence to Vesa Selonen .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Selonen, V., Toivonen, P. & Lindén, A. Long-term snow-track indices of a Finnish native mesopredator declined while those of an invasive one increased. Sci Rep 14 , 26190 (2024). https://doi.org/10.1038/s41598-024-77777-w

Download citation

Received : 06 March 2024

Accepted : 25 October 2024

Published : 31 October 2024

DOI : https://doi.org/10.1038/s41598-024-77777-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Climate change
  • Invasive animals
  • Mesopredators
  • Nyctereutes procyonoides
  • Snow-tracks
  • Vulpes vulpes

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

in the scientific method a hypothesis is a what

SEP home page

  • Table of Contents
  • New in this Archive
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Scientific Method

Science is an enormously successful human enterprise. The study of scientific method is the attempt to discern the activities by which that success is achieved. Among the activities often identified as characteristic of science are systematic observation and experimentation, inductive and deductive reasoning, and the formation and testing of hypotheses and theories. How these are carried out in detail can vary greatly, but characteristics like these have been looked to as a way of demarcating scientific activity from non-science, where only enterprises which employ some canonical form of scientific method or methods should be considered science (see also the entry on science and pseudo-science ). Others have questioned whether there is anything like a fixed toolkit of methods which is common across science and only science. Some reject privileging one view of method as part of rejecting broader views about the nature of science, such as naturalism (Dupré 2004); some reject any restriction in principle (pluralism).

Scientific method should be distinguished from the aims and products of science, such as knowledge, predictions, or control. Methods are the means by which those goals are achieved. Scientific method should also be distinguished from meta-methodology, which includes the values and justifications behind a particular characterization of scientific method (i.e., a methodology) — values such as objectivity, reproducibility, simplicity, or past successes. Methodological rules are proposed to govern method and it is a meta-methodological question whether methods obeying those rules satisfy given values. Finally, method is distinct, to some degree, from the detailed and contextual practices through which methods are implemented. The latter might range over: specific laboratory techniques; mathematical formalisms or other specialized languages used in descriptions and reasoning; technological or other material means; ways of communicating and sharing results, whether with other scientists or with the public at large; or the conventions, habits, enforced customs, and institutional controls over how and what science is carried out.

While it is important to recognize these distinctions, their boundaries are fuzzy. Hence, accounts of method cannot be entirely divorced from their methodological and meta-methodological motivations or justifications, Moreover, each aspect plays a crucial role in identifying methods. Disputes about method have therefore played out at the detail, rule, and meta-rule levels. Changes in beliefs about the certainty or fallibility of scientific knowledge, for instance (which is a meta-methodological consideration of what we can hope for methods to deliver), have meant different emphases on deductive and inductive reasoning, or on the relative importance attached to reasoning over observation (i.e., differences over particular methods.) Beliefs about the role of science in society will affect the place one gives to values in scientific method.

The issue which has shaped debates over scientific method the most in the last half century is the question of how pluralist do we need to be about method? Unificationists continue to hold out for one method essential to science; nihilism is a form of radical pluralism, which considers the effectiveness of any methodological prescription to be so context sensitive as to render it not explanatory on its own. Some middle degree of pluralism regarding the methods embodied in scientific practice seems appropriate. But the details of scientific practice vary with time and place, from institution to institution, across scientists and their subjects of investigation. How significant are the variations for understanding science and its success? How much can method be abstracted from practice? This entry describes some of the attempts to characterize scientific method or methods, as well as arguments for a more context-sensitive approach to methods embedded in actual scientific practices.

1. Overview and organizing themes

2. historical review: aristotle to mill, 3.1 logical constructionism and operationalism, 3.2. h-d as a logic of confirmation, 3.3. popper and falsificationism, 3.4 meta-methodology and the end of method, 4. statistical methods for hypothesis testing, 5.1 creative and exploratory practices.

  • 5.2 Computer methods and the ‘new ways’ of doing science

6.1 “The scientific method” in science education and as seen by scientists

6.2 privileged methods and ‘gold standards’, 6.3 scientific method in the court room, 6.4 deviating practices, 7. conclusion, other internet resources, related entries.

This entry could have been given the title Scientific Methods and gone on to fill volumes, or it could have been extremely short, consisting of a brief summary rejection of the idea that there is any such thing as a unique Scientific Method at all. Both unhappy prospects are due to the fact that scientific activity varies so much across disciplines, times, places, and scientists that any account which manages to unify it all will either consist of overwhelming descriptive detail, or trivial generalizations.

The choice of scope for the present entry is more optimistic, taking a cue from the recent movement in philosophy of science toward a greater attention to practice: to what scientists actually do. This “turn to practice” can be seen as the latest form of studies of methods in science, insofar as it represents an attempt at understanding scientific activity, but through accounts that are neither meant to be universal and unified, nor singular and narrowly descriptive. To some extent, different scientists at different times and places can be said to be using the same method even though, in practice, the details are different.

Whether the context in which methods are carried out is relevant, or to what extent, will depend largely on what one takes the aims of science to be and what one’s own aims are. For most of the history of scientific methodology the assumption has been that the most important output of science is knowledge and so the aim of methodology should be to discover those methods by which scientific knowledge is generated.

Science was seen to embody the most successful form of reasoning (but which form?) to the most certain knowledge claims (but how certain?) on the basis of systematically collected evidence (but what counts as evidence, and should the evidence of the senses take precedence, or rational insight?) Section 2 surveys some of the history, pointing to two major themes. One theme is seeking the right balance between observation and reasoning (and the attendant forms of reasoning which employ them); the other is how certain scientific knowledge is or can be.

Section 3 turns to 20 th century debates on scientific method. In the second half of the 20 th century the epistemic privilege of science faced several challenges and many philosophers of science abandoned the reconstruction of the logic of scientific method. Views changed significantly regarding which functions of science ought to be captured and why. For some, the success of science was better identified with social or cultural features. Historical and sociological turns in the philosophy of science were made, with a demand that greater attention be paid to the non-epistemic aspects of science, such as sociological, institutional, material, and political factors. Even outside of those movements there was an increased specialization in the philosophy of science, with more and more focus on specific fields within science. The combined upshot was very few philosophers arguing any longer for a grand unified methodology of science. Sections 3 and 4 surveys the main positions on scientific method in 20 th century philosophy of science, focusing on where they differ in their preference for confirmation or falsification or for waiving the idea of a special scientific method altogether.

In recent decades, attention has primarily been paid to scientific activities traditionally falling under the rubric of method, such as experimental design and general laboratory practice, the use of statistics, the construction and use of models and diagrams, interdisciplinary collaboration, and science communication. Sections 4–6 attempt to construct a map of the current domains of the study of methods in science.

As these sections illustrate, the question of method is still central to the discourse about science. Scientific method remains a topic for education, for science policy, and for scientists. It arises in the public domain where the demarcation or status of science is at issue. Some philosophers have recently returned, therefore, to the question of what it is that makes science a unique cultural product. This entry will close with some of these recent attempts at discerning and encapsulating the activities by which scientific knowledge is achieved.

Attempting a history of scientific method compounds the vast scope of the topic. This section briefly surveys the background to modern methodological debates. What can be called the classical view goes back to antiquity, and represents a point of departure for later divergences. [ 1 ]

We begin with a point made by Laudan (1968) in his historical survey of scientific method:

Perhaps the most serious inhibition to the emergence of the history of theories of scientific method as a respectable area of study has been the tendency to conflate it with the general history of epistemology, thereby assuming that the narrative categories and classificatory pigeon-holes applied to the latter are also basic to the former. (1968: 5)

To see knowledge about the natural world as falling under knowledge more generally is an understandable conflation. Histories of theories of method would naturally employ the same narrative categories and classificatory pigeon holes. An important theme of the history of epistemology, for example, is the unification of knowledge, a theme reflected in the question of the unification of method in science. Those who have identified differences in kinds of knowledge have often likewise identified different methods for achieving that kind of knowledge (see the entry on the unity of science ).

Different views on what is known, how it is known, and what can be known are connected. Plato distinguished the realms of things into the visible and the intelligible ( The Republic , 510a, in Cooper 1997). Only the latter, the Forms, could be objects of knowledge. The intelligible truths could be known with the certainty of geometry and deductive reasoning. What could be observed of the material world, however, was by definition imperfect and deceptive, not ideal. The Platonic way of knowledge therefore emphasized reasoning as a method, downplaying the importance of observation. Aristotle disagreed, locating the Forms in the natural world as the fundamental principles to be discovered through the inquiry into nature ( Metaphysics Z , in Barnes 1984).

Aristotle is recognized as giving the earliest systematic treatise on the nature of scientific inquiry in the western tradition, one which embraced observation and reasoning about the natural world. In the Prior and Posterior Analytics , Aristotle reflects first on the aims and then the methods of inquiry into nature. A number of features can be found which are still considered by most to be essential to science. For Aristotle, empiricism, careful observation (but passive observation, not controlled experiment), is the starting point. The aim is not merely recording of facts, though. For Aristotle, science ( epistêmê ) is a body of properly arranged knowledge or learning—the empirical facts, but also their ordering and display are of crucial importance. The aims of discovery, ordering, and display of facts partly determine the methods required of successful scientific inquiry. Also determinant is the nature of the knowledge being sought, and the explanatory causes proper to that kind of knowledge (see the discussion of the four causes in the entry on Aristotle on causality ).

In addition to careful observation, then, scientific method requires a logic as a system of reasoning for properly arranging, but also inferring beyond, what is known by observation. Methods of reasoning may include induction, prediction, or analogy, among others. Aristotle’s system (along with his catalogue of fallacious reasoning) was collected under the title the Organon . This title would be echoed in later works on scientific reasoning, such as Novum Organon by Francis Bacon, and Novum Organon Restorum by William Whewell (see below). In Aristotle’s Organon reasoning is divided primarily into two forms, a rough division which persists into modern times. The division, known most commonly today as deductive versus inductive method, appears in other eras and methodologies as analysis/​synthesis, non-ampliative/​ampliative, or even confirmation/​verification. The basic idea is there are two “directions” to proceed in our methods of inquiry: one away from what is observed, to the more fundamental, general, and encompassing principles; the other, from the fundamental and general to instances or implications of principles.

The basic aim and method of inquiry identified here can be seen as a theme running throughout the next two millennia of reflection on the correct way to seek after knowledge: carefully observe nature and then seek rules or principles which explain or predict its operation. The Aristotelian corpus provided the framework for a commentary tradition on scientific method independent of science itself (cosmos versus physics.) During the medieval period, figures such as Albertus Magnus (1206–1280), Thomas Aquinas (1225–1274), Robert Grosseteste (1175–1253), Roger Bacon (1214/1220–1292), William of Ockham (1287–1347), Andreas Vesalius (1514–1546), Giacomo Zabarella (1533–1589) all worked to clarify the kind of knowledge obtainable by observation and induction, the source of justification of induction, and best rules for its application. [ 2 ] Many of their contributions we now think of as essential to science (see also Laudan 1968). As Aristotle and Plato had employed a framework of reasoning either “to the forms” or “away from the forms”, medieval thinkers employed directions away from the phenomena or back to the phenomena. In analysis, a phenomena was examined to discover its basic explanatory principles; in synthesis, explanations of a phenomena were constructed from first principles.

During the Scientific Revolution these various strands of argument, experiment, and reason were forged into a dominant epistemic authority. The 16 th –18 th centuries were a period of not only dramatic advance in knowledge about the operation of the natural world—advances in mechanical, medical, biological, political, economic explanations—but also of self-awareness of the revolutionary changes taking place, and intense reflection on the source and legitimation of the method by which the advances were made. The struggle to establish the new authority included methodological moves. The Book of Nature, according to the metaphor of Galileo Galilei (1564–1642) or Francis Bacon (1561–1626), was written in the language of mathematics, of geometry and number. This motivated an emphasis on mathematical description and mechanical explanation as important aspects of scientific method. Through figures such as Henry More and Ralph Cudworth, a neo-Platonic emphasis on the importance of metaphysical reflection on nature behind appearances, particularly regarding the spiritual as a complement to the purely mechanical, remained an important methodological thread of the Scientific Revolution (see the entries on Cambridge platonists ; Boyle ; Henry More ; Galileo ).

In Novum Organum (1620), Bacon was critical of the Aristotelian method for leaping from particulars to universals too quickly. The syllogistic form of reasoning readily mixed those two types of propositions. Bacon aimed at the invention of new arts, principles, and directions. His method would be grounded in methodical collection of observations, coupled with correction of our senses (and particularly, directions for the avoidance of the Idols, as he called them, kinds of systematic errors to which naïve observers are prone.) The community of scientists could then climb, by a careful, gradual and unbroken ascent, to reliable general claims.

Bacon’s method has been criticized as impractical and too inflexible for the practicing scientist. Whewell would later criticize Bacon in his System of Logic for paying too little attention to the practices of scientists. It is hard to find convincing examples of Bacon’s method being put in to practice in the history of science, but there are a few who have been held up as real examples of 16 th century scientific, inductive method, even if not in the rigid Baconian mold: figures such as Robert Boyle (1627–1691) and William Harvey (1578–1657) (see the entry on Bacon ).

It is to Isaac Newton (1642–1727), however, that historians of science and methodologists have paid greatest attention. Given the enormous success of his Principia Mathematica and Opticks , this is understandable. The study of Newton’s method has had two main thrusts: the implicit method of the experiments and reasoning presented in the Opticks, and the explicit methodological rules given as the Rules for Philosophising (the Regulae) in Book III of the Principia . [ 3 ] Newton’s law of gravitation, the linchpin of his new cosmology, broke with explanatory conventions of natural philosophy, first for apparently proposing action at a distance, but more generally for not providing “true”, physical causes. The argument for his System of the World ( Principia , Book III) was based on phenomena, not reasoned first principles. This was viewed (mainly on the continent) as insufficient for proper natural philosophy. The Regulae counter this objection, re-defining the aims of natural philosophy by re-defining the method natural philosophers should follow. (See the entry on Newton’s philosophy .)

To his list of methodological prescriptions should be added Newton’s famous phrase “ hypotheses non fingo ” (commonly translated as “I frame no hypotheses”.) The scientist was not to invent systems but infer explanations from observations, as Bacon had advocated. This would come to be known as inductivism. In the century after Newton, significant clarifications of the Newtonian method were made. Colin Maclaurin (1698–1746), for instance, reconstructed the essential structure of the method as having complementary analysis and synthesis phases, one proceeding away from the phenomena in generalization, the other from the general propositions to derive explanations of new phenomena. Denis Diderot (1713–1784) and editors of the Encyclopédie did much to consolidate and popularize Newtonianism, as did Francesco Algarotti (1721–1764). The emphasis was often the same, as much on the character of the scientist as on their process, a character which is still commonly assumed. The scientist is humble in the face of nature, not beholden to dogma, obeys only his eyes, and follows the truth wherever it leads. It was certainly Voltaire (1694–1778) and du Chatelet (1706–1749) who were most influential in propagating the latter vision of the scientist and their craft, with Newton as hero. Scientific method became a revolutionary force of the Enlightenment. (See also the entries on Newton , Leibniz , Descartes , Boyle , Hume , enlightenment , as well as Shank 2008 for a historical overview.)

Not all 18 th century reflections on scientific method were so celebratory. Famous also are George Berkeley’s (1685–1753) attack on the mathematics of the new science, as well as the over-emphasis of Newtonians on observation; and David Hume’s (1711–1776) undermining of the warrant offered for scientific claims by inductive justification (see the entries on: George Berkeley ; David Hume ; Hume’s Newtonianism and Anti-Newtonianism ). Hume’s problem of induction motivated Immanuel Kant (1724–1804) to seek new foundations for empirical method, though as an epistemic reconstruction, not as any set of practical guidelines for scientists. Both Hume and Kant influenced the methodological reflections of the next century, such as the debate between Mill and Whewell over the certainty of inductive inferences in science.

The debate between John Stuart Mill (1806–1873) and William Whewell (1794–1866) has become the canonical methodological debate of the 19 th century. Although often characterized as a debate between inductivism and hypothetico-deductivism, the role of the two methods on each side is actually more complex. On the hypothetico-deductive account, scientists work to come up with hypotheses from which true observational consequences can be deduced—hence, hypothetico-deductive. Because Whewell emphasizes both hypotheses and deduction in his account of method, he can be seen as a convenient foil to the inductivism of Mill. However, equally if not more important to Whewell’s portrayal of scientific method is what he calls the “fundamental antithesis”. Knowledge is a product of the objective (what we see in the world around us) and subjective (the contributions of our mind to how we perceive and understand what we experience, which he called the Fundamental Ideas). Both elements are essential according to Whewell, and he was therefore critical of Kant for too much focus on the subjective, and John Locke (1632–1704) and Mill for too much focus on the senses. Whewell’s fundamental ideas can be discipline relative. An idea can be fundamental even if it is necessary for knowledge only within a given scientific discipline (e.g., chemical affinity for chemistry). This distinguishes fundamental ideas from the forms and categories of intuition of Kant. (See the entry on Whewell .)

Clarifying fundamental ideas would therefore be an essential part of scientific method and scientific progress. Whewell called this process “Discoverer’s Induction”. It was induction, following Bacon or Newton, but Whewell sought to revive Bacon’s account by emphasising the role of ideas in the clear and careful formulation of inductive hypotheses. Whewell’s induction is not merely the collecting of objective facts. The subjective plays a role through what Whewell calls the Colligation of Facts, a creative act of the scientist, the invention of a theory. A theory is then confirmed by testing, where more facts are brought under the theory, called the Consilience of Inductions. Whewell felt that this was the method by which the true laws of nature could be discovered: clarification of fundamental concepts, clever invention of explanations, and careful testing. Mill, in his critique of Whewell, and others who have cast Whewell as a fore-runner of the hypothetico-deductivist view, seem to have under-estimated the importance of this discovery phase in Whewell’s understanding of method (Snyder 1997a,b, 1999). Down-playing the discovery phase would come to characterize methodology of the early 20 th century (see section 3 ).

Mill, in his System of Logic , put forward a narrower view of induction as the essence of scientific method. For Mill, induction is the search first for regularities among events. Among those regularities, some will continue to hold for further observations, eventually gaining the status of laws. One can also look for regularities among the laws discovered in a domain, i.e., for a law of laws. Which “law law” will hold is time and discipline dependent and open to revision. One example is the Law of Universal Causation, and Mill put forward specific methods for identifying causes—now commonly known as Mill’s methods. These five methods look for circumstances which are common among the phenomena of interest, those which are absent when the phenomena are, or those for which both vary together. Mill’s methods are still seen as capturing basic intuitions about experimental methods for finding the relevant explanatory factors ( System of Logic (1843), see Mill entry). The methods advocated by Whewell and Mill, in the end, look similar. Both involve inductive generalization to covering laws. They differ dramatically, however, with respect to the necessity of the knowledge arrived at; that is, at the meta-methodological level (see the entries on Whewell and Mill entries).

3. Logic of method and critical responses

The quantum and relativistic revolutions in physics in the early 20 th century had a profound effect on methodology. Conceptual foundations of both theories were taken to show the defeasibility of even the most seemingly secure intuitions about space, time and bodies. Certainty of knowledge about the natural world was therefore recognized as unattainable. Instead a renewed empiricism was sought which rendered science fallible but still rationally justifiable.

Analyses of the reasoning of scientists emerged, according to which the aspects of scientific method which were of primary importance were the means of testing and confirming of theories. A distinction in methodology was made between the contexts of discovery and justification. The distinction could be used as a wedge between the particularities of where and how theories or hypotheses are arrived at, on the one hand, and the underlying reasoning scientists use (whether or not they are aware of it) when assessing theories and judging their adequacy on the basis of the available evidence. By and large, for most of the 20 th century, philosophy of science focused on the second context, although philosophers differed on whether to focus on confirmation or refutation as well as on the many details of how confirmation or refutation could or could not be brought about. By the mid-20 th century these attempts at defining the method of justification and the context distinction itself came under pressure. During the same period, philosophy of science developed rapidly, and from section 4 this entry will therefore shift from a primarily historical treatment of the scientific method towards a primarily thematic one.

Advances in logic and probability held out promise of the possibility of elaborate reconstructions of scientific theories and empirical method, the best example being Rudolf Carnap’s The Logical Structure of the World (1928). Carnap attempted to show that a scientific theory could be reconstructed as a formal axiomatic system—that is, a logic. That system could refer to the world because some of its basic sentences could be interpreted as observations or operations which one could perform to test them. The rest of the theoretical system, including sentences using theoretical or unobservable terms (like electron or force) would then either be meaningful because they could be reduced to observations, or they had purely logical meanings (called analytic, like mathematical identities). This has been referred to as the verifiability criterion of meaning. According to the criterion, any statement not either analytic or verifiable was strictly meaningless. Although the view was endorsed by Carnap in 1928, he would later come to see it as too restrictive (Carnap 1956). Another familiar version of this idea is operationalism of Percy William Bridgman. In The Logic of Modern Physics (1927) Bridgman asserted that every physical concept could be defined in terms of the operations one would perform to verify the application of that concept. Making good on the operationalisation of a concept even as simple as length, however, can easily become enormously complex (for measuring very small lengths, for instance) or impractical (measuring large distances like light years.)

Carl Hempel’s (1950, 1951) criticisms of the verifiability criterion of meaning had enormous influence. He pointed out that universal generalizations, such as most scientific laws, were not strictly meaningful on the criterion. Verifiability and operationalism both seemed too restrictive to capture standard scientific aims and practice. The tenuous connection between these reconstructions and actual scientific practice was criticized in another way. In both approaches, scientific methods are instead recast in methodological roles. Measurements, for example, were looked to as ways of giving meanings to terms. The aim of the philosopher of science was not to understand the methods per se , but to use them to reconstruct theories, their meanings, and their relation to the world. When scientists perform these operations, however, they will not report that they are doing them to give meaning to terms in a formal axiomatic system. This disconnect between methodology and the details of actual scientific practice would seem to violate the empiricism the Logical Positivists and Bridgman were committed to. The view that methodology should correspond to practice (to some extent) has been called historicism, or intuitionism. We turn to these criticisms and responses in section 3.4 . [ 4 ]

Positivism also had to contend with the recognition that a purely inductivist approach, along the lines of Bacon-Newton-Mill, was untenable. There was no pure observation, for starters. All observation was theory laden. Theory is required to make any observation, therefore not all theory can be derived from observation alone. (See the entry on theory and observation in science .) Even granting an observational basis, Hume had already pointed out that one could not deductively justify inductive conclusions without begging the question by presuming the success of the inductive method. Likewise, positivist attempts at analyzing how a generalization can be confirmed by observations of its instances were subject to a number of criticisms. Goodman (1965) and Hempel (1965) both point to paradoxes inherent in standard accounts of confirmation. Recent attempts at explaining how observations can serve to confirm a scientific theory are discussed in section 4 below.

The standard starting point for a non-inductive analysis of the logic of confirmation is known as the Hypothetico-Deductive (H-D) method. In its simplest form, a sentence of a theory which expresses some hypothesis is confirmed by its true consequences. As noted in section 2 , this method had been advanced by Whewell in the 19 th century, as well as Nicod (1924) and others in the 20 th century. Often, Hempel’s (1966) description of the H-D method, illustrated by the case of Semmelweiss’ inferential procedures in establishing the cause of childbed fever, has been presented as a key account of H-D as well as a foil for criticism of the H-D account of confirmation (see, for example, Lipton’s (2004) discussion of inference to the best explanation; also the entry on confirmation ). Hempel described Semmelsweiss’ procedure as examining various hypotheses explaining the cause of childbed fever. Some hypotheses conflicted with observable facts and could be rejected as false immediately. Others needed to be tested experimentally by deducing which observable events should follow if the hypothesis were true (what Hempel called the test implications of the hypothesis), then conducting an experiment and observing whether or not the test implications occurred. If the experiment showed the test implication to be false, the hypothesis could be rejected. If the experiment showed the test implications to be true, however, this did not prove the hypothesis true. The confirmation of a test implication does not verify a hypothesis, though Hempel did allow that “it provides at least some support, some corroboration or confirmation for it” (Hempel 1966: 8). The degree of this support then depends on the quantity, variety and precision of the supporting evidence.

Another approach that took off from the difficulties with inductive inference was Karl Popper’s critical rationalism or falsificationism (Popper 1959, 1963). Falsification is deductive and similar to H-D in that it involves scientists deducing observational consequences from the hypothesis under test. For Popper, however, the important point was not the degree of confirmation that successful prediction offered to a hypothesis. The crucial thing was the logical asymmetry between confirmation, based on inductive inference, and falsification, which can be based on a deductive inference. (This simple opposition was later questioned, by Lakatos, among others. See the entry on historicist theories of scientific rationality. )

Popper stressed that, regardless of the amount of confirming evidence, we can never be certain that a hypothesis is true without committing the fallacy of affirming the consequent. Instead, Popper introduced the notion of corroboration as a measure for how well a theory or hypothesis has survived previous testing—but without implying that this is also a measure for the probability that it is true.

Popper was also motivated by his doubts about the scientific status of theories like the Marxist theory of history or psycho-analysis, and so wanted to demarcate between science and pseudo-science. Popper saw this as an importantly different distinction than demarcating science from metaphysics. The latter demarcation was the primary concern of many logical empiricists. Popper used the idea of falsification to draw a line instead between pseudo and proper science. Science was science because its method involved subjecting theories to rigorous tests which offered a high probability of failing and thus refuting the theory.

A commitment to the risk of failure was important. Avoiding falsification could be done all too easily. If a consequence of a theory is inconsistent with observations, an exception can be added by introducing auxiliary hypotheses designed explicitly to save the theory, so-called ad hoc modifications. This Popper saw done in pseudo-science where ad hoc theories appeared capable of explaining anything in their field of application. In contrast, science is risky. If observations showed the predictions from a theory to be wrong, the theory would be refuted. Hence, scientific hypotheses must be falsifiable. Not only must there exist some possible observation statement which could falsify the hypothesis or theory, were it observed, (Popper called these the hypothesis’ potential falsifiers) it is crucial to the Popperian scientific method that such falsifications be sincerely attempted on a regular basis.

The more potential falsifiers of a hypothesis, the more falsifiable it would be, and the more the hypothesis claimed. Conversely, hypotheses without falsifiers claimed very little or nothing at all. Originally, Popper thought that this meant the introduction of ad hoc hypotheses only to save a theory should not be countenanced as good scientific method. These would undermine the falsifiabililty of a theory. However, Popper later came to recognize that the introduction of modifications (immunizations, he called them) was often an important part of scientific development. Responding to surprising or apparently falsifying observations often generated important new scientific insights. Popper’s own example was the observed motion of Uranus which originally did not agree with Newtonian predictions. The ad hoc hypothesis of an outer planet explained the disagreement and led to further falsifiable predictions. Popper sought to reconcile the view by blurring the distinction between falsifiable and not falsifiable, and speaking instead of degrees of testability (Popper 1985: 41f.).

From the 1960s on, sustained meta-methodological criticism emerged that drove philosophical focus away from scientific method. A brief look at those criticisms follows, with recommendations for further reading at the end of the entry.

Thomas Kuhn’s The Structure of Scientific Revolutions (1962) begins with a well-known shot across the bow for philosophers of science:

History, if viewed as a repository for more than anecdote or chronology, could produce a decisive transformation in the image of science by which we are now possessed. (1962: 1)

The image Kuhn thought needed transforming was the a-historical, rational reconstruction sought by many of the Logical Positivists, though Carnap and other positivists were actually quite sympathetic to Kuhn’s views. (See the entry on the Vienna Circle .) Kuhn shares with other of his contemporaries, such as Feyerabend and Lakatos, a commitment to a more empirical approach to philosophy of science. Namely, the history of science provides important data, and necessary checks, for philosophy of science, including any theory of scientific method.

The history of science reveals, according to Kuhn, that scientific development occurs in alternating phases. During normal science, the members of the scientific community adhere to the paradigm in place. Their commitment to the paradigm means a commitment to the puzzles to be solved and the acceptable ways of solving them. Confidence in the paradigm remains so long as steady progress is made in solving the shared puzzles. Method in this normal phase operates within a disciplinary matrix (Kuhn’s later concept of a paradigm) which includes standards for problem solving, and defines the range of problems to which the method should be applied. An important part of a disciplinary matrix is the set of values which provide the norms and aims for scientific method. The main values that Kuhn identifies are prediction, problem solving, simplicity, consistency, and plausibility.

An important by-product of normal science is the accumulation of puzzles which cannot be solved with resources of the current paradigm. Once accumulation of these anomalies has reached some critical mass, it can trigger a communal shift to a new paradigm and a new phase of normal science. Importantly, the values that provide the norms and aims for scientific method may have transformed in the meantime. Method may therefore be relative to discipline, time or place

Feyerabend also identified the aims of science as progress, but argued that any methodological prescription would only stifle that progress (Feyerabend 1988). His arguments are grounded in re-examining accepted “myths” about the history of science. Heroes of science, like Galileo, are shown to be just as reliant on rhetoric and persuasion as they are on reason and demonstration. Others, like Aristotle, are shown to be far more reasonable and far-reaching in their outlooks then they are given credit for. As a consequence, the only rule that could provide what he took to be sufficient freedom was the vacuous “anything goes”. More generally, even the methodological restriction that science is the best way to pursue knowledge, and to increase knowledge, is too restrictive. Feyerabend suggested instead that science might, in fact, be a threat to a free society, because it and its myth had become so dominant (Feyerabend 1978).

An even more fundamental kind of criticism was offered by several sociologists of science from the 1970s onwards who rejected the methodology of providing philosophical accounts for the rational development of science and sociological accounts of the irrational mistakes. Instead, they adhered to a symmetry thesis on which any causal explanation of how scientific knowledge is established needs to be symmetrical in explaining truth and falsity, rationality and irrationality, success and mistakes, by the same causal factors (see, e.g., Barnes and Bloor 1982, Bloor 1991). Movements in the Sociology of Science, like the Strong Programme, or in the social dimensions and causes of knowledge more generally led to extended and close examination of detailed case studies in contemporary science and its history. (See the entries on the social dimensions of scientific knowledge and social epistemology .) Well-known examinations by Latour and Woolgar (1979/1986), Knorr-Cetina (1981), Pickering (1984), Shapin and Schaffer (1985) seem to bear out that it was social ideologies (on a macro-scale) or individual interactions and circumstances (on a micro-scale) which were the primary causal factors in determining which beliefs gained the status of scientific knowledge. As they saw it therefore, explanatory appeals to scientific method were not empirically grounded.

A late, and largely unexpected, criticism of scientific method came from within science itself. Beginning in the early 2000s, a number of scientists attempting to replicate the results of published experiments could not do so. There may be close conceptual connection between reproducibility and method. For example, if reproducibility means that the same scientific methods ought to produce the same result, and all scientific results ought to be reproducible, then whatever it takes to reproduce a scientific result ought to be called scientific method. Space limits us to the observation that, insofar as reproducibility is a desired outcome of proper scientific method, it is not strictly a part of scientific method. (See the entry on reproducibility of scientific results .)

By the close of the 20 th century the search for the scientific method was flagging. Nola and Sankey (2000b) could introduce their volume on method by remarking that “For some, the whole idea of a theory of scientific method is yester-year’s debate …”.

Despite the many difficulties that philosophers encountered in trying to providing a clear methodology of conformation (or refutation), still important progress has been made on understanding how observation can provide evidence for a given theory. Work in statistics has been crucial for understanding how theories can be tested empirically, and in recent decades a huge literature has developed that attempts to recast confirmation in Bayesian terms. Here these developments can be covered only briefly, and we refer to the entry on confirmation for further details and references.

Statistics has come to play an increasingly important role in the methodology of the experimental sciences from the 19 th century onwards. At that time, statistics and probability theory took on a methodological role as an analysis of inductive inference, and attempts to ground the rationality of induction in the axioms of probability theory have continued throughout the 20 th century and in to the present. Developments in the theory of statistics itself, meanwhile, have had a direct and immense influence on the experimental method, including methods for measuring the uncertainty of observations such as the Method of Least Squares developed by Legendre and Gauss in the early 19 th century, criteria for the rejection of outliers proposed by Peirce by the mid-19 th century, and the significance tests developed by Gosset (a.k.a. “Student”), Fisher, Neyman & Pearson and others in the 1920s and 1930s (see, e.g., Swijtink 1987 for a brief historical overview; and also the entry on C.S. Peirce ).

These developments within statistics then in turn led to a reflective discussion among both statisticians and philosophers of science on how to perceive the process of hypothesis testing: whether it was a rigorous statistical inference that could provide a numerical expression of the degree of confidence in the tested hypothesis, or if it should be seen as a decision between different courses of actions that also involved a value component. This led to a major controversy among Fisher on the one side and Neyman and Pearson on the other (see especially Fisher 1955, Neyman 1956 and Pearson 1955, and for analyses of the controversy, e.g., Howie 2002, Marks 2000, Lenhard 2006). On Fisher’s view, hypothesis testing was a methodology for when to accept or reject a statistical hypothesis, namely that a hypothesis should be rejected by evidence if this evidence would be unlikely relative to other possible outcomes, given the hypothesis were true. In contrast, on Neyman and Pearson’s view, the consequence of error also had to play a role when deciding between hypotheses. Introducing the distinction between the error of rejecting a true hypothesis (type I error) and accepting a false hypothesis (type II error), they argued that it depends on the consequences of the error to decide whether it is more important to avoid rejecting a true hypothesis or accepting a false one. Hence, Fisher aimed for a theory of inductive inference that enabled a numerical expression of confidence in a hypothesis. To him, the important point was the search for truth, not utility. In contrast, the Neyman-Pearson approach provided a strategy of inductive behaviour for deciding between different courses of action. Here, the important point was not whether a hypothesis was true, but whether one should act as if it was.

Similar discussions are found in the philosophical literature. On the one side, Churchman (1948) and Rudner (1953) argued that because scientific hypotheses can never be completely verified, a complete analysis of the methods of scientific inference includes ethical judgments in which the scientists must decide whether the evidence is sufficiently strong or that the probability is sufficiently high to warrant the acceptance of the hypothesis, which again will depend on the importance of making a mistake in accepting or rejecting the hypothesis. Others, such as Jeffrey (1956) and Levi (1960) disagreed and instead defended a value-neutral view of science on which scientists should bracket their attitudes, preferences, temperament, and values when assessing the correctness of their inferences. For more details on this value-free ideal in the philosophy of science and its historical development, see Douglas (2009) and Howard (2003). For a broad set of case studies examining the role of values in science, see e.g. Elliott & Richards 2017.

In recent decades, philosophical discussions of the evaluation of probabilistic hypotheses by statistical inference have largely focused on Bayesianism that understands probability as a measure of a person’s degree of belief in an event, given the available information, and frequentism that instead understands probability as a long-run frequency of a repeatable event. Hence, for Bayesians probabilities refer to a state of knowledge, whereas for frequentists probabilities refer to frequencies of events (see, e.g., Sober 2008, chapter 1 for a detailed introduction to Bayesianism and frequentism as well as to likelihoodism). Bayesianism aims at providing a quantifiable, algorithmic representation of belief revision, where belief revision is a function of prior beliefs (i.e., background knowledge) and incoming evidence. Bayesianism employs a rule based on Bayes’ theorem, a theorem of the probability calculus which relates conditional probabilities. The probability that a particular hypothesis is true is interpreted as a degree of belief, or credence, of the scientist. There will also be a probability and a degree of belief that a hypothesis will be true conditional on a piece of evidence (an observation, say) being true. Bayesianism proscribes that it is rational for the scientist to update their belief in the hypothesis to that conditional probability should it turn out that the evidence is, in fact, observed (see, e.g., Sprenger & Hartmann 2019 for a comprehensive treatment of Bayesian philosophy of science). Originating in the work of Neyman and Person, frequentism aims at providing the tools for reducing long-run error rates, such as the error-statistical approach developed by Mayo (1996) that focuses on how experimenters can avoid both type I and type II errors by building up a repertoire of procedures that detect errors if and only if they are present. Both Bayesianism and frequentism have developed over time, they are interpreted in different ways by its various proponents, and their relations to previous criticism to attempts at defining scientific method are seen differently by proponents and critics. The literature, surveys, reviews and criticism in this area are vast and the reader is referred to the entries on Bayesian epistemology and confirmation .

5. Method in Practice

Attention to scientific practice, as we have seen, is not itself new. However, the turn to practice in the philosophy of science of late can be seen as a correction to the pessimism with respect to method in philosophy of science in later parts of the 20 th century, and as an attempted reconciliation between sociological and rationalist explanations of scientific knowledge. Much of this work sees method as detailed and context specific problem-solving procedures, and methodological analyses to be at the same time descriptive, critical and advisory (see Nickles 1987 for an exposition of this view). The following section contains a survey of some of the practice focuses. In this section we turn fully to topics rather than chronology.

A problem with the distinction between the contexts of discovery and justification that figured so prominently in philosophy of science in the first half of the 20 th century (see section 2 ) is that no such distinction can be clearly seen in scientific activity (see Arabatzis 2006). Thus, in recent decades, it has been recognized that study of conceptual innovation and change should not be confined to psychology and sociology of science, but are also important aspects of scientific practice which philosophy of science should address (see also the entry on scientific discovery ). Looking for the practices that drive conceptual innovation has led philosophers to examine both the reasoning practices of scientists and the wide realm of experimental practices that are not directed narrowly at testing hypotheses, that is, exploratory experimentation.

Examining the reasoning practices of historical and contemporary scientists, Nersessian (2008) has argued that new scientific concepts are constructed as solutions to specific problems by systematic reasoning, and that of analogy, visual representation and thought-experimentation are among the important reasoning practices employed. These ubiquitous forms of reasoning are reliable—but also fallible—methods of conceptual development and change. On her account, model-based reasoning consists of cycles of construction, simulation, evaluation and adaption of models that serve as interim interpretations of the target problem to be solved. Often, this process will lead to modifications or extensions, and a new cycle of simulation and evaluation. However, Nersessian also emphasizes that

creative model-based reasoning cannot be applied as a simple recipe, is not always productive of solutions, and even its most exemplary usages can lead to incorrect solutions. (Nersessian 2008: 11)

Thus, while on the one hand she agrees with many previous philosophers that there is no logic of discovery, discoveries can derive from reasoned processes, such that a large and integral part of scientific practice is

the creation of concepts through which to comprehend, structure, and communicate about physical phenomena …. (Nersessian 1987: 11)

Similarly, work on heuristics for discovery and theory construction by scholars such as Darden (1991) and Bechtel & Richardson (1993) present science as problem solving and investigate scientific problem solving as a special case of problem-solving in general. Drawing largely on cases from the biological sciences, much of their focus has been on reasoning strategies for the generation, evaluation, and revision of mechanistic explanations of complex systems.

Addressing another aspect of the context distinction, namely the traditional view that the primary role of experiments is to test theoretical hypotheses according to the H-D model, other philosophers of science have argued for additional roles that experiments can play. The notion of exploratory experimentation was introduced to describe experiments driven by the desire to obtain empirical regularities and to develop concepts and classifications in which these regularities can be described (Steinle 1997, 2002; Burian 1997; Waters 2007)). However the difference between theory driven experimentation and exploratory experimentation should not be seen as a sharp distinction. Theory driven experiments are not always directed at testing hypothesis, but may also be directed at various kinds of fact-gathering, such as determining numerical parameters. Vice versa , exploratory experiments are usually informed by theory in various ways and are therefore not theory-free. Instead, in exploratory experiments phenomena are investigated without first limiting the possible outcomes of the experiment on the basis of extant theory about the phenomena.

The development of high throughput instrumentation in molecular biology and neighbouring fields has given rise to a special type of exploratory experimentation that collects and analyses very large amounts of data, and these new ‘omics’ disciplines are often said to represent a break with the ideal of hypothesis-driven science (Burian 2007; Elliott 2007; Waters 2007; O’Malley 2007) and instead described as data-driven research (Leonelli 2012; Strasser 2012) or as a special kind of “convenience experimentation” in which many experiments are done simply because they are extraordinarily convenient to perform (Krohs 2012).

5.2 Computer methods and ‘new ways’ of doing science

The field of omics just described is possible because of the ability of computers to process, in a reasonable amount of time, the huge quantities of data required. Computers allow for more elaborate experimentation (higher speed, better filtering, more variables, sophisticated coordination and control), but also, through modelling and simulations, might constitute a form of experimentation themselves. Here, too, we can pose a version of the general question of method versus practice: does the practice of using computers fundamentally change scientific method, or merely provide a more efficient means of implementing standard methods?

Because computers can be used to automate measurements, quantifications, calculations, and statistical analyses where, for practical reasons, these operations cannot be otherwise carried out, many of the steps involved in reaching a conclusion on the basis of an experiment are now made inside a “black box”, without the direct involvement or awareness of a human. This has epistemological implications, regarding what we can know, and how we can know it. To have confidence in the results, computer methods are therefore subjected to tests of verification and validation.

The distinction between verification and validation is easiest to characterize in the case of computer simulations. In a typical computer simulation scenario computers are used to numerically integrate differential equations for which no analytic solution is available. The equations are part of the model the scientist uses to represent a phenomenon or system under investigation. Verifying a computer simulation means checking that the equations of the model are being correctly approximated. Validating a simulation means checking that the equations of the model are adequate for the inferences one wants to make on the basis of that model.

A number of issues related to computer simulations have been raised. The identification of validity and verification as the testing methods has been criticized. Oreskes et al. (1994) raise concerns that “validiation”, because it suggests deductive inference, might lead to over-confidence in the results of simulations. The distinction itself is probably too clean, since actual practice in the testing of simulations mixes and moves back and forth between the two (Weissart 1997; Parker 2008a; Winsberg 2010). Computer simulations do seem to have a non-inductive character, given that the principles by which they operate are built in by the programmers, and any results of the simulation follow from those in-built principles in such a way that those results could, in principle, be deduced from the program code and its inputs. The status of simulations as experiments has therefore been examined (Kaufmann and Smarr 1993; Humphreys 1995; Hughes 1999; Norton and Suppe 2001). This literature considers the epistemology of these experiments: what we can learn by simulation, and also the kinds of justifications which can be given in applying that knowledge to the “real” world. (Mayo 1996; Parker 2008b). As pointed out, part of the advantage of computer simulation derives from the fact that huge numbers of calculations can be carried out without requiring direct observation by the experimenter/​simulator. At the same time, many of these calculations are approximations to the calculations which would be performed first-hand in an ideal situation. Both factors introduce uncertainties into the inferences drawn from what is observed in the simulation.

For many of the reasons described above, computer simulations do not seem to belong clearly to either the experimental or theoretical domain. Rather, they seem to crucially involve aspects of both. This has led some authors, such as Fox Keller (2003: 200) to argue that we ought to consider computer simulation a “qualitatively different way of doing science”. The literature in general tends to follow Kaufmann and Smarr (1993) in referring to computer simulation as a “third way” for scientific methodology (theoretical reasoning and experimental practice are the first two ways.). It should also be noted that the debates around these issues have tended to focus on the form of computer simulation typical in the physical sciences, where models are based on dynamical equations. Other forms of simulation might not have the same problems, or have problems of their own (see the entry on computer simulations in science ).

In recent years, the rapid development of machine learning techniques has prompted some scholars to suggest that the scientific method has become “obsolete” (Anderson 2008, Carrol and Goodstein 2009). This has resulted in an intense debate on the relative merit of data-driven and hypothesis-driven research (for samples, see e.g. Mazzocchi 2015 or Succi and Coveney 2018). For a detailed treatment of this topic, we refer to the entry scientific research and big data .

6. Discourse on scientific method

Despite philosophical disagreements, the idea of the scientific method still figures prominently in contemporary discourse on many different topics, both within science and in society at large. Often, reference to scientific method is used in ways that convey either the legend of a single, universal method characteristic of all science, or grants to a particular method or set of methods privilege as a special ‘gold standard’, often with reference to particular philosophers to vindicate the claims. Discourse on scientific method also typically arises when there is a need to distinguish between science and other activities, or for justifying the special status conveyed to science. In these areas, the philosophical attempts at identifying a set of methods characteristic for scientific endeavors are closely related to the philosophy of science’s classical problem of demarcation (see the entry on science and pseudo-science ) and to the philosophical analysis of the social dimension of scientific knowledge and the role of science in democratic society.

One of the settings in which the legend of a single, universal scientific method has been particularly strong is science education (see, e.g., Bauer 1992; McComas 1996; Wivagg & Allchin 2002). [ 5 ] Often, ‘the scientific method’ is presented in textbooks and educational web pages as a fixed four or five step procedure starting from observations and description of a phenomenon and progressing over formulation of a hypothesis which explains the phenomenon, designing and conducting experiments to test the hypothesis, analyzing the results, and ending with drawing a conclusion. Such references to a universal scientific method can be found in educational material at all levels of science education (Blachowicz 2009), and numerous studies have shown that the idea of a general and universal scientific method often form part of both students’ and teachers’ conception of science (see, e.g., Aikenhead 1987; Osborne et al. 2003). In response, it has been argued that science education need to focus more on teaching about the nature of science, although views have differed on whether this is best done through student-led investigations, contemporary cases, or historical cases (Allchin, Andersen & Nielsen 2014)

Although occasionally phrased with reference to the H-D method, important historical roots of the legend in science education of a single, universal scientific method are the American philosopher and psychologist Dewey’s account of inquiry in How We Think (1910) and the British mathematician Karl Pearson’s account of science in Grammar of Science (1892). On Dewey’s account, inquiry is divided into the five steps of

(i) a felt difficulty, (ii) its location and definition, (iii) suggestion of a possible solution, (iv) development by reasoning of the bearing of the suggestions, (v) further observation and experiment leading to its acceptance or rejection. (Dewey 1910: 72)

Similarly, on Pearson’s account, scientific investigations start with measurement of data and observation of their correction and sequence from which scientific laws can be discovered with the aid of creative imagination. These laws have to be subject to criticism, and their final acceptance will have equal validity for “all normally constituted minds”. Both Dewey’s and Pearson’s accounts should be seen as generalized abstractions of inquiry and not restricted to the realm of science—although both Dewey and Pearson referred to their respective accounts as ‘the scientific method’.

Occasionally, scientists make sweeping statements about a simple and distinct scientific method, as exemplified by Feynman’s simplified version of a conjectures and refutations method presented, for example, in the last of his 1964 Cornell Messenger lectures. [ 6 ] However, just as often scientists have come to the same conclusion as recent philosophy of science that there is not any unique, easily described scientific method. For example, the physicist and Nobel Laureate Weinberg described in the paper “The Methods of Science … And Those By Which We Live” (1995) how

The fact that the standards of scientific success shift with time does not only make the philosophy of science difficult; it also raises problems for the public understanding of science. We do not have a fixed scientific method to rally around and defend. (1995: 8)

Interview studies with scientists on their conception of method shows that scientists often find it hard to figure out whether available evidence confirms their hypothesis, and that there are no direct translations between general ideas about method and specific strategies to guide how research is conducted (Schickore & Hangel 2019, Hangel & Schickore 2017)

Reference to the scientific method has also often been used to argue for the scientific nature or special status of a particular activity. Philosophical positions that argue for a simple and unique scientific method as a criterion of demarcation, such as Popperian falsification, have often attracted practitioners who felt that they had a need to defend their domain of practice. For example, references to conjectures and refutation as the scientific method are abundant in much of the literature on complementary and alternative medicine (CAM)—alongside the competing position that CAM, as an alternative to conventional biomedicine, needs to develop its own methodology different from that of science.

Also within mainstream science, reference to the scientific method is used in arguments regarding the internal hierarchy of disciplines and domains. A frequently seen argument is that research based on the H-D method is superior to research based on induction from observations because in deductive inferences the conclusion follows necessarily from the premises. (See, e.g., Parascandola 1998 for an analysis of how this argument has been made to downgrade epidemiology compared to the laboratory sciences.) Similarly, based on an examination of the practices of major funding institutions such as the National Institutes of Health (NIH), the National Science Foundation (NSF) and the Biomedical Sciences Research Practices (BBSRC) in the UK, O’Malley et al. (2009) have argued that funding agencies seem to have a tendency to adhere to the view that the primary activity of science is to test hypotheses, while descriptive and exploratory research is seen as merely preparatory activities that are valuable only insofar as they fuel hypothesis-driven research.

In some areas of science, scholarly publications are structured in a way that may convey the impression of a neat and linear process of inquiry from stating a question, devising the methods by which to answer it, collecting the data, to drawing a conclusion from the analysis of data. For example, the codified format of publications in most biomedical journals known as the IMRAD format (Introduction, Method, Results, Analysis, Discussion) is explicitly described by the journal editors as “not an arbitrary publication format but rather a direct reflection of the process of scientific discovery” (see the so-called “Vancouver Recommendations”, ICMJE 2013: 11). However, scientific publications do not in general reflect the process by which the reported scientific results were produced. For example, under the provocative title “Is the scientific paper a fraud?”, Medawar argued that scientific papers generally misrepresent how the results have been produced (Medawar 1963/1996). Similar views have been advanced by philosophers, historians and sociologists of science (Gilbert 1976; Holmes 1987; Knorr-Cetina 1981; Schickore 2008; Suppe 1998) who have argued that scientists’ experimental practices are messy and often do not follow any recognizable pattern. Publications of research results, they argue, are retrospective reconstructions of these activities that often do not preserve the temporal order or the logic of these activities, but are instead often constructed in order to screen off potential criticism (see Schickore 2008 for a review of this work).

Philosophical positions on the scientific method have also made it into the court room, especially in the US where judges have drawn on philosophy of science in deciding when to confer special status to scientific expert testimony. A key case is Daubert vs Merrell Dow Pharmaceuticals (92–102, 509 U.S. 579, 1993). In this case, the Supreme Court argued in its 1993 ruling that trial judges must ensure that expert testimony is reliable, and that in doing this the court must look at the expert’s methodology to determine whether the proffered evidence is actually scientific knowledge. Further, referring to works of Popper and Hempel the court stated that

ordinarily, a key question to be answered in determining whether a theory or technique is scientific knowledge … is whether it can be (and has been) tested. (Justice Blackmun, Daubert v. Merrell Dow Pharmaceuticals; see Other Internet Resources for a link to the opinion)

But as argued by Haack (2005a,b, 2010) and by Foster & Hubner (1999), by equating the question of whether a piece of testimony is reliable with the question whether it is scientific as indicated by a special methodology, the court was producing an inconsistent mixture of Popper’s and Hempel’s philosophies, and this has later led to considerable confusion in subsequent case rulings that drew on the Daubert case (see Haack 2010 for a detailed exposition).

The difficulties around identifying the methods of science are also reflected in the difficulties of identifying scientific misconduct in the form of improper application of the method or methods of science. One of the first and most influential attempts at defining misconduct in science was the US definition from 1989 that defined misconduct as

fabrication, falsification, plagiarism, or other practices that seriously deviate from those that are commonly accepted within the scientific community . (Code of Federal Regulations, part 50, subpart A., August 8, 1989, italics added)

However, the “other practices that seriously deviate” clause was heavily criticized because it could be used to suppress creative or novel science. For example, the National Academy of Science stated in their report Responsible Science (1992) that it

wishes to discourage the possibility that a misconduct complaint could be lodged against scientists based solely on their use of novel or unorthodox research methods. (NAS: 27)

This clause was therefore later removed from the definition. For an entry into the key philosophical literature on conduct in science, see Shamoo & Resnick (2009).

The question of the source of the success of science has been at the core of philosophy since the beginning of modern science. If viewed as a matter of epistemology more generally, scientific method is a part of the entire history of philosophy. Over that time, science and whatever methods its practitioners may employ have changed dramatically. Today, many philosophers have taken up the banners of pluralism or of practice to focus on what are, in effect, fine-grained and contextually limited examinations of scientific method. Others hope to shift perspectives in order to provide a renewed general account of what characterizes the activity we call science.

One such perspective has been offered recently by Hoyningen-Huene (2008, 2013), who argues from the history of philosophy of science that after three lengthy phases of characterizing science by its method, we are now in a phase where the belief in the existence of a positive scientific method has eroded and what has been left to characterize science is only its fallibility. First was a phase from Plato and Aristotle up until the 17 th century where the specificity of scientific knowledge was seen in its absolute certainty established by proof from evident axioms; next was a phase up to the mid-19 th century in which the means to establish the certainty of scientific knowledge had been generalized to include inductive procedures as well. In the third phase, which lasted until the last decades of the 20 th century, it was recognized that empirical knowledge was fallible, but it was still granted a special status due to its distinctive mode of production. But now in the fourth phase, according to Hoyningen-Huene, historical and philosophical studies have shown how “scientific methods with the characteristics as posited in the second and third phase do not exist” (2008: 168) and there is no longer any consensus among philosophers and historians of science about the nature of science. For Hoyningen-Huene, this is too negative a stance, and he therefore urges the question about the nature of science anew. His own answer to this question is that “scientific knowledge differs from other kinds of knowledge, especially everyday knowledge, primarily by being more systematic” (Hoyningen-Huene 2013: 14). Systematicity can have several different dimensions: among them are more systematic descriptions, explanations, predictions, defense of knowledge claims, epistemic connectedness, ideal of completeness, knowledge generation, representation of knowledge and critical discourse. Hence, what characterizes science is the greater care in excluding possible alternative explanations, the more detailed elaboration with respect to data on which predictions are based, the greater care in detecting and eliminating sources of error, the more articulate connections to other pieces of knowledge, etc. On this position, what characterizes science is not that the methods employed are unique to science, but that the methods are more carefully employed.

Another, similar approach has been offered by Haack (2003). She sets off, similar to Hoyningen-Huene, from a dissatisfaction with the recent clash between what she calls Old Deferentialism and New Cynicism. The Old Deferentialist position is that science progressed inductively by accumulating true theories confirmed by empirical evidence or deductively by testing conjectures against basic statements; while the New Cynics position is that science has no epistemic authority and no uniquely rational method and is merely just politics. Haack insists that contrary to the views of the New Cynics, there are objective epistemic standards, and there is something epistemologically special about science, even though the Old Deferentialists pictured this in a wrong way. Instead, she offers a new Critical Commonsensist account on which standards of good, strong, supportive evidence and well-conducted, honest, thorough and imaginative inquiry are not exclusive to the sciences, but the standards by which we judge all inquirers. In this sense, science does not differ in kind from other kinds of inquiry, but it may differ in the degree to which it requires broad and detailed background knowledge and a familiarity with a technical vocabulary that only specialists may possess.

  • Aikenhead, G.S., 1987, “High-school graduates’ beliefs about science-technology-society. III. Characteristics and limitations of scientific knowledge”, Science Education , 71(4): 459–487.
  • Allchin, D., H.M. Andersen and K. Nielsen, 2014, “Complementary Approaches to Teaching Nature of Science: Integrating Student Inquiry, Historical Cases, and Contemporary Cases in Classroom Practice”, Science Education , 98: 461–486.
  • Anderson, C., 2008, “The end of theory: The data deluge makes the scientific method obsolete”, Wired magazine , 16(7): 16–07
  • Arabatzis, T., 2006, “On the inextricability of the context of discovery and the context of justification”, in Revisiting Discovery and Justification , J. Schickore and F. Steinle (eds.), Dordrecht: Springer, pp. 215–230.
  • Barnes, J. (ed.), 1984, The Complete Works of Aristotle, Vols I and II , Princeton: Princeton University Press.
  • Barnes, B. and D. Bloor, 1982, “Relativism, Rationalism, and the Sociology of Knowledge”, in Rationality and Relativism , M. Hollis and S. Lukes (eds.), Cambridge: MIT Press, pp. 1–20.
  • Bauer, H.H., 1992, Scientific Literacy and the Myth of the Scientific Method , Urbana: University of Illinois Press.
  • Bechtel, W. and R.C. Richardson, 1993, Discovering complexity , Princeton, NJ: Princeton University Press.
  • Berkeley, G., 1734, The Analyst in De Motu and The Analyst: A Modern Edition with Introductions and Commentary , D. Jesseph (trans. and ed.), Dordrecht: Kluwer Academic Publishers, 1992.
  • Blachowicz, J., 2009, “How science textbooks treat scientific method: A philosopher’s perspective”, The British Journal for the Philosophy of Science , 60(2): 303–344.
  • Bloor, D., 1991, Knowledge and Social Imagery , Chicago: University of Chicago Press, 2 nd edition.
  • Boyle, R., 1682, New experiments physico-mechanical, touching the air , Printed by Miles Flesher for Richard Davis, bookseller in Oxford.
  • Bridgman, P.W., 1927, The Logic of Modern Physics , New York: Macmillan.
  • –––, 1956, “The Methodological Character of Theoretical Concepts”, in The Foundations of Science and the Concepts of Science and Psychology , Herbert Feigl and Michael Scriven (eds.), Minnesota: University of Minneapolis Press, pp. 38–76.
  • Burian, R., 1997, “Exploratory Experimentation and the Role of Histochemical Techniques in the Work of Jean Brachet, 1938–1952”, History and Philosophy of the Life Sciences , 19(1): 27–45.
  • –––, 2007, “On microRNA and the need for exploratory experimentation in post-genomic molecular biology”, History and Philosophy of the Life Sciences , 29(3): 285–311.
  • Carnap, R., 1928, Der logische Aufbau der Welt , Berlin: Bernary, transl. by R.A. George, The Logical Structure of the World , Berkeley: University of California Press, 1967.
  • –––, 1956, “The methodological character of theoretical concepts”, Minnesota studies in the philosophy of science , 1: 38–76.
  • Carrol, S., and D. Goodstein, 2009, “Defining the scientific method”, Nature Methods , 6: 237.
  • Churchman, C.W., 1948, “Science, Pragmatics, Induction”, Philosophy of Science , 15(3): 249–268.
  • Cooper, J. (ed.), 1997, Plato: Complete Works , Indianapolis: Hackett.
  • Darden, L., 1991, Theory Change in Science: Strategies from Mendelian Genetics , Oxford: Oxford University Press
  • Dewey, J., 1910, How we think , New York: Dover Publications (reprinted 1997).
  • Douglas, H., 2009, Science, Policy, and the Value-Free Ideal , Pittsburgh: University of Pittsburgh Press.
  • Dupré, J., 2004, “Miracle of Monism ”, in Naturalism in Question , Mario De Caro and David Macarthur (eds.), Cambridge, MA: Harvard University Press, pp. 36–58.
  • Elliott, K.C., 2007, “Varieties of exploratory experimentation in nanotoxicology”, History and Philosophy of the Life Sciences , 29(3): 311–334.
  • Elliott, K. C., and T. Richards (eds.), 2017, Exploring inductive risk: Case studies of values in science , Oxford: Oxford University Press.
  • Falcon, Andrea, 2005, Aristotle and the science of nature: Unity without uniformity , Cambridge: Cambridge University Press.
  • Feyerabend, P., 1978, Science in a Free Society , London: New Left Books
  • –––, 1988, Against Method , London: Verso, 2 nd edition.
  • Fisher, R.A., 1955, “Statistical Methods and Scientific Induction”, Journal of The Royal Statistical Society. Series B (Methodological) , 17(1): 69–78.
  • Foster, K. and P.W. Huber, 1999, Judging Science. Scientific Knowledge and the Federal Courts , Cambridge: MIT Press.
  • Fox Keller, E., 2003, “Models, Simulation, and ‘computer experiments’”, in The Philosophy of Scientific Experimentation , H. Radder (ed.), Pittsburgh: Pittsburgh University Press, 198–215.
  • Gilbert, G., 1976, “The transformation of research findings into scientific knowledge”, Social Studies of Science , 6: 281–306.
  • Gimbel, S., 2011, Exploring the Scientific Method , Chicago: University of Chicago Press.
  • Goodman, N., 1965, Fact , Fiction, and Forecast , Indianapolis: Bobbs-Merrill.
  • Haack, S., 1995, “Science is neither sacred nor a confidence trick”, Foundations of Science , 1(3): 323–335.
  • –––, 2003, Defending science—within reason , Amherst: Prometheus.
  • –––, 2005a, “Disentangling Daubert: an epistemological study in theory and practice”, Journal of Philosophy, Science and Law , 5, Haack 2005a available online . doi:10.5840/jpsl2005513
  • –––, 2005b, “Trial and error: The Supreme Court’s philosophy of science”, American Journal of Public Health , 95: S66-S73.
  • –––, 2010, “Federal Philosophy of Science: A Deconstruction-and a Reconstruction”, NYUJL & Liberty , 5: 394.
  • Hangel, N. and J. Schickore, 2017, “Scientists’ conceptions of good research practice”, Perspectives on Science , 25(6): 766–791
  • Harper, W.L., 2011, Isaac Newton’s Scientific Method: Turning Data into Evidence about Gravity and Cosmology , Oxford: Oxford University Press.
  • Hempel, C., 1950, “Problems and Changes in the Empiricist Criterion of Meaning”, Revue Internationale de Philosophie , 41(11): 41–63.
  • –––, 1951, “The Concept of Cognitive Significance: A Reconsideration”, Proceedings of the American Academy of Arts and Sciences , 80(1): 61–77.
  • –––, 1965, Aspects of scientific explanation and other essays in the philosophy of science , New York–London: Free Press.
  • –––, 1966, Philosophy of Natural Science , Englewood Cliffs: Prentice-Hall.
  • Holmes, F.L., 1987, “Scientific writing and scientific discovery”, Isis , 78(2): 220–235.
  • Howard, D., 2003, “Two left turns make a right: On the curious political career of North American philosophy of science at midcentury”, in Logical Empiricism in North America , G.L. Hardcastle & A.W. Richardson (eds.), Minneapolis: University of Minnesota Press, pp. 25–93.
  • Hoyningen-Huene, P., 2008, “Systematicity: The nature of science”, Philosophia , 36(2): 167–180.
  • –––, 2013, Systematicity. The Nature of Science , Oxford: Oxford University Press.
  • Howie, D., 2002, Interpreting probability: Controversies and developments in the early twentieth century , Cambridge: Cambridge University Press.
  • Hughes, R., 1999, “The Ising Model, Computer Simulation, and Universal Physics”, in Models as Mediators , M. Morgan and M. Morrison (eds.), Cambridge: Cambridge University Press, pp. 97–145
  • Hume, D., 1739, A Treatise of Human Nature , D. Fate Norton and M.J. Norton (eds.), Oxford: Oxford University Press, 2000.
  • Humphreys, P., 1995, “Computational science and scientific method”, Minds and Machines , 5(1): 499–512.
  • ICMJE, 2013, “Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals”, International Committee of Medical Journal Editors, available online , accessed August 13 2014
  • Jeffrey, R.C., 1956, “Valuation and Acceptance of Scientific Hypotheses”, Philosophy of Science , 23(3): 237–246.
  • Kaufmann, W.J., and L.L. Smarr, 1993, Supercomputing and the Transformation of Science , New York: Scientific American Library.
  • Knorr-Cetina, K., 1981, The Manufacture of Knowledge , Oxford: Pergamon Press.
  • Krohs, U., 2012, “Convenience experimentation”, Studies in History and Philosophy of Biological and BiomedicalSciences , 43: 52–57.
  • Kuhn, T.S., 1962, The Structure of Scientific Revolutions , Chicago: University of Chicago Press
  • Latour, B. and S. Woolgar, 1986, Laboratory Life: The Construction of Scientific Facts , Princeton: Princeton University Press, 2 nd edition.
  • Laudan, L., 1968, “Theories of scientific method from Plato to Mach”, History of Science , 7(1): 1–63.
  • Lenhard, J., 2006, “Models and statistical inference: The controversy between Fisher and Neyman-Pearson”, The British Journal for the Philosophy of Science , 57(1): 69–91.
  • Leonelli, S., 2012, “Making Sense of Data-Driven Research in the Biological and the Biomedical Sciences”, Studies in the History and Philosophy of the Biological and Biomedical Sciences , 43(1): 1–3.
  • Levi, I., 1960, “Must the scientist make value judgments?”, Philosophy of Science , 57(11): 345–357
  • Lindley, D., 1991, Theory Change in Science: Strategies from Mendelian Genetics , Oxford: Oxford University Press.
  • Lipton, P., 2004, Inference to the Best Explanation , London: Routledge, 2 nd edition.
  • Marks, H.M., 2000, The progress of experiment: science and therapeutic reform in the United States, 1900–1990 , Cambridge: Cambridge University Press.
  • Mazzochi, F., 2015, “Could Big Data be the end of theory in science?”, EMBO reports , 16: 1250–1255.
  • Mayo, D.G., 1996, Error and the Growth of Experimental Knowledge , Chicago: University of Chicago Press.
  • McComas, W.F., 1996, “Ten myths of science: Reexamining what we think we know about the nature of science”, School Science and Mathematics , 96(1): 10–16.
  • Medawar, P.B., 1963/1996, “Is the scientific paper a fraud”, in The Strange Case of the Spotted Mouse and Other Classic Essays on Science , Oxford: Oxford University Press, 33–39.
  • Mill, J.S., 1963, Collected Works of John Stuart Mill , J. M. Robson (ed.), Toronto: University of Toronto Press
  • NAS, 1992, Responsible Science: Ensuring the integrity of the research process , Washington DC: National Academy Press.
  • Nersessian, N.J., 1987, “A cognitive-historical approach to meaning in scientific theories”, in The process of science , N. Nersessian (ed.), Berlin: Springer, pp. 161–177.
  • –––, 2008, Creating Scientific Concepts , Cambridge: MIT Press.
  • Newton, I., 1726, Philosophiae naturalis Principia Mathematica (3 rd edition), in The Principia: Mathematical Principles of Natural Philosophy: A New Translation , I.B. Cohen and A. Whitman (trans.), Berkeley: University of California Press, 1999.
  • –––, 1704, Opticks or A Treatise of the Reflections, Refractions, Inflections & Colors of Light , New York: Dover Publications, 1952.
  • Neyman, J., 1956, “Note on an Article by Sir Ronald Fisher”, Journal of the Royal Statistical Society. Series B (Methodological) , 18: 288–294.
  • Nickles, T., 1987, “Methodology, heuristics, and rationality”, in Rational changes in science: Essays on Scientific Reasoning , J.C. Pitt (ed.), Berlin: Springer, pp. 103–132.
  • Nicod, J., 1924, Le problème logique de l’induction , Paris: Alcan. (Engl. transl. “The Logical Problem of Induction”, in Foundations of Geometry and Induction , London: Routledge, 2000.)
  • Nola, R. and H. Sankey, 2000a, “A selective survey of theories of scientific method”, in Nola and Sankey 2000b: 1–65.
  • –––, 2000b, After Popper, Kuhn and Feyerabend. Recent Issues in Theories of Scientific Method , London: Springer.
  • –––, 2007, Theories of Scientific Method , Stocksfield: Acumen.
  • Norton, S., and F. Suppe, 2001, “Why atmospheric modeling is good science”, in Changing the Atmosphere: Expert Knowledge and Environmental Governance , C. Miller and P. Edwards (eds.), Cambridge, MA: MIT Press, 88–133.
  • O’Malley, M., 2007, “Exploratory experimentation and scientific practice: Metagenomics and the proteorhodopsin case”, History and Philosophy of the Life Sciences , 29(3): 337–360.
  • O’Malley, M., C. Haufe, K. Elliot, and R. Burian, 2009, “Philosophies of Funding”, Cell , 138: 611–615.
  • Oreskes, N., K. Shrader-Frechette, and K. Belitz, 1994, “Verification, Validation and Confirmation of Numerical Models in the Earth Sciences”, Science , 263(5147): 641–646.
  • Osborne, J., S. Simon, and S. Collins, 2003, “Attitudes towards science: a review of the literature and its implications”, International Journal of Science Education , 25(9): 1049–1079.
  • Parascandola, M., 1998, “Epidemiology—2 nd -Rate Science”, Public Health Reports , 113(4): 312–320.
  • Parker, W., 2008a, “Franklin, Holmes and the Epistemology of Computer Simulation”, International Studies in the Philosophy of Science , 22(2): 165–83.
  • –––, 2008b, “Computer Simulation through an Error-Statistical Lens”, Synthese , 163(3): 371–84.
  • Pearson, K. 1892, The Grammar of Science , London: J.M. Dents and Sons, 1951
  • Pearson, E.S., 1955, “Statistical Concepts in Their Relation to Reality”, Journal of the Royal Statistical Society , B, 17: 204–207.
  • Pickering, A., 1984, Constructing Quarks: A Sociological History of Particle Physics , Edinburgh: Edinburgh University Press.
  • Popper, K.R., 1959, The Logic of Scientific Discovery , London: Routledge, 2002
  • –––, 1963, Conjectures and Refutations , London: Routledge, 2002.
  • –––, 1985, Unended Quest: An Intellectual Autobiography , La Salle: Open Court Publishing Co..
  • Rudner, R., 1953, “The Scientist Qua Scientist Making Value Judgments”, Philosophy of Science , 20(1): 1–6.
  • Rudolph, J.L., 2005, “Epistemology for the masses: The origin of ‘The Scientific Method’ in American Schools”, History of Education Quarterly , 45(3): 341–376
  • Schickore, J., 2008, “Doing science, writing science”, Philosophy of Science , 75: 323–343.
  • Schickore, J. and N. Hangel, 2019, “‘It might be this, it should be that…’ uncertainty and doubt in day-to-day science practice”, European Journal for Philosophy of Science , 9(2): 31. doi:10.1007/s13194-019-0253-9
  • Shamoo, A.E. and D.B. Resnik, 2009, Responsible Conduct of Research , Oxford: Oxford University Press.
  • Shank, J.B., 2008, The Newton Wars and the Beginning of the French Enlightenment , Chicago: The University of Chicago Press.
  • Shapin, S. and S. Schaffer, 1985, Leviathan and the air-pump , Princeton: Princeton University Press.
  • Smith, G.E., 2002, “The Methodology of the Principia”, in The Cambridge Companion to Newton , I.B. Cohen and G.E. Smith (eds.), Cambridge: Cambridge University Press, 138–173.
  • Snyder, L.J., 1997a, “Discoverers’ Induction”, Philosophy of Science , 64: 580–604.
  • –––, 1997b, “The Mill-Whewell Debate: Much Ado About Induction”, Perspectives on Science , 5: 159–198.
  • –––, 1999, “Renovating the Novum Organum: Bacon, Whewell and Induction”, Studies in History and Philosophy of Science , 30: 531–557.
  • Sober, E., 2008, Evidence and Evolution. The logic behind the science , Cambridge: Cambridge University Press
  • Sprenger, J. and S. Hartmann, 2019, Bayesian philosophy of science , Oxford: Oxford University Press.
  • Steinle, F., 1997, “Entering New Fields: Exploratory Uses of Experimentation”, Philosophy of Science (Proceedings), 64: S65–S74.
  • –––, 2002, “Experiments in History and Philosophy of Science”, Perspectives on Science , 10(4): 408–432.
  • Strasser, B.J., 2012, “Data-driven sciences: From wonder cabinets to electronic databases”, Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences , 43(1): 85–87.
  • Succi, S. and P.V. Coveney, 2018, “Big data: the end of the scientific method?”, Philosophical Transactions of the Royal Society A , 377: 20180145. doi:10.1098/rsta.2018.0145
  • Suppe, F., 1998, “The Structure of a Scientific Paper”, Philosophy of Science , 65(3): 381–405.
  • Swijtink, Z.G., 1987, “The objectification of observation: Measurement and statistical methods in the nineteenth century”, in The probabilistic revolution. Ideas in History, Vol. 1 , L. Kruger (ed.), Cambridge MA: MIT Press, pp. 261–285.
  • Waters, C.K., 2007, “The nature and context of exploratory experimentation: An introduction to three case studies of exploratory research”, History and Philosophy of the Life Sciences , 29(3): 275–284.
  • Weinberg, S., 1995, “The methods of science… and those by which we live”, Academic Questions , 8(2): 7–13.
  • Weissert, T., 1997, The Genesis of Simulation in Dynamics: Pursuing the Fermi-Pasta-Ulam Problem , New York: Springer Verlag.
  • William H., 1628, Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus , in On the Motion of the Heart and Blood in Animals , R. Willis (trans.), Buffalo: Prometheus Books, 1993.
  • Winsberg, E., 2010, Science in the Age of Computer Simulation , Chicago: University of Chicago Press.
  • Wivagg, D. & D. Allchin, 2002, “The Dogma of the Scientific Method”, The American Biology Teacher , 64(9): 645–646
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Blackmun opinion , in Daubert v. Merrell Dow Pharmaceuticals (92–102), 509 U.S. 579 (1993).
  • Scientific Method at philpapers. Darrell Rowbottom (ed.).
  • Recent Articles | Scientific Method | The Scientist Magazine

al-Kindi | Albert the Great [= Albertus magnus] | Aquinas, Thomas | Arabic and Islamic Philosophy, disciplines in: natural philosophy and natural science | Arabic and Islamic Philosophy, historical and methodological topics in: Greek sources | Arabic and Islamic Philosophy, historical and methodological topics in: influence of Arabic and Islamic Philosophy on the Latin West | Aristotle | Bacon, Francis | Bacon, Roger | Berkeley, George | biology: experiment in | Boyle, Robert | Cambridge Platonists | confirmation | Descartes, René | Enlightenment | epistemology | epistemology: Bayesian | epistemology: social | Feyerabend, Paul | Galileo Galilei | Grosseteste, Robert | Hempel, Carl | Hume, David | Hume, David: Newtonianism and Anti-Newtonianism | induction: problem of | Kant, Immanuel | Kuhn, Thomas | Leibniz, Gottfried Wilhelm | Locke, John | Mill, John Stuart | More, Henry | Neurath, Otto | Newton, Isaac | Newton, Isaac: philosophy | Ockham [Occam], William | operationalism | Peirce, Charles Sanders | Plato | Popper, Karl | rationality: historicist theories of | Reichenbach, Hans | reproducibility, scientific | Schlick, Moritz | science: and pseudo-science | science: theory and observation in | science: unity of | scientific discovery | scientific knowledge: social dimensions of | simulations in science | skepticism: medieval | space and time: absolute and relational space and motion, post-Newtonian theories | Vienna Circle | Whewell, William | Zabarella, Giacomo

Copyright © 2021 by Brian Hepburn < brian . hepburn @ wichita . edu > Hanne Andersen < hanne . andersen @ ind . ku . dk >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2023 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

IMAGES

  1. What is an Hypothesis

    in the scientific method a hypothesis is a what

  2. 13 Different Types of Hypothesis (2024)

    in the scientific method a hypothesis is a what

  3. Formula for Using the Scientific Method

    in the scientific method a hypothesis is a what

  4. Mapa Conceptual Metodo Cientifico Hypothesis Scientific Method Images

    in the scientific method a hypothesis is a what

  5. What is a Hypothesis

    in the scientific method a hypothesis is a what

  6. Scientific Method: Definition and Examples

    in the scientific method a hypothesis is a what

VIDEO

  1. The Scientific Method: Steps, Terms and Examples

  2. The Scientific Method: Steps, Examples, Tips, and Exercise

  3. The Scientific Method: Steps and Examples

  4. The Scientific Method

  5. Scientific Method for Kids

  6. 6 Steps to Formulate a STRONG Hypothesis

COMMENTS

  1. Scientific hypothesis

    hypothesis. science. scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ...

  2. What Are The Steps Of The Scientific Method?

    The scientific method is a process that includes several steps: First, an observation or question arises about a phenomenon. Then a hypothesis is formulated to explain the phenomenon, which is used to make predictions about other related occurrences or to predict the results of new observations quantitatively. Finally, these predictions are put to the test through experiments or further ...

  3. Steps of the Scientific Method

    The six steps of the scientific method include: 1) asking a question about something you observe, 2) doing background research to learn what is already known about the topic, 3) constructing a hypothesis, 4) experimenting to test the hypothesis, 5) analyzing the data from the experiment and drawing conclusions, and 6) communicating the results ...

  4. Scientific method

    simulation. scientific method, mathematical and experimental technique employed in the sciences. More specifically, it is the technique used in the construction and testing of a scientific hypothesis. The process of observing, asking questions, and seeking answers through tests and experiments is not unique to any one field of science.

  5. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method. Many describe it as an "educated guess ...

  6. 6 Steps of the Scientific Method

    Learn about the scientific method, including explanations of the six steps in the process, the variables involved, and why each step is important. ... Hypothesis Propose a hypothesis. This is a sort of educated guess about what you expect your research to reveal. A hypothesis is a statement used to predict the outcome of an experiment. Usually ...

  7. What is a Hypothesis

    Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments and the ...

  8. Scientific method

    The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century. The scientific method involves careful observation coupled with rigorous scepticism, because cognitive assumptions can distort the interpretation of the observation.Scientific inquiry includes creating a hypothesis through inductive reasoning ...

  9. Scientific Method

    Often, 'the scientific method' is presented in textbooks and educational web pages as a fixed four or five step procedure starting from observations and description of a phenomenon and progressing over formulation of a hypothesis which explains the phenomenon, designing and conducting experiments to test the hypothesis, analyzing the ...

  10. Hypothesis

    hypothesis, something supposed or taken for granted, with the object of following out its consequences (Greek hypothesis, "a putting under," the Latin equivalent being suppositio). Discussion with Kara Rogers of how the scientific model is used to test a hypothesis or represent a theory Kara Rogers, senior biomedical sciences editor of ...

  11. PDF Steps of the Scientific Method

    Steps of the Scientific Method Key Info • The scientific method is a way to ask and answer scientific questions by making observations and doing experiments. • The steps of the scientific method are to: o Ask a Question o Do Background Research o Construct a Hypothesis o Test Your Hypothesis by Doing an Experiment o Analyze Your Data and Draw a Conclusion

  12. Hypothesis: Definition, Examples, and Types

    The Hypothesis in the Scientific Method . In the scientific method, whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  13. 1.11: Understanding Science- The Scientific Method

    The Scientific Method. Modern science is based on the scientific method, a procedure that follows these steps: Formulate a question or observe a problem; Apply objective experimentation and observation; Analyze collected data and Interpret results; Devise an evidence-based theory; Submit findings to peer review and/or publication

  14. The Scientific Method

    Understanding and Using The Scientific Method. The Scientific Method is a process used to design and perform experiments. It's important to minimize experimental errors and bias, and increase confidence in the accuracy of your results. In the previous sections, we talked about how to pick a good topic and specific question to investigate.

  15. The Scientific Method Tutorial

    The Scientific Method Steps in the Scientific Method. There is a great deal of variation in the specific techniques scientists use explore the natural world. However, the following steps characterize the majority of scientific investigations: Step 1: Make observations Step 2: Propose a hypothesis to explain observations

  16. Science and the scientific method: Definitions and examples

    The process of generating and testing a hypothesis forms the backbone of the scientific method. When an idea has been confirmed over many experiments, it can be called a scientific theory.

  17. The Scientific Method

    Cowee, M., Curtis, K., Lewis, S., Harris, T. 2008, Extension | University of Nevada, Reno, FS-08-10. This fact sheet contains important information regarding the scientific method by taking a look that what it is and what it is not. Learn serval definitions like hypothesis and theory, the process of the scientific method, replication, and many ...

  18. What Is a Hypothesis and How Do I Write One? · PrepScholar

    Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument.". In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.

  19. What is the scientific method?

    According to Kosso (2011), the scientific method is a specific step-by-step method that aims to answer a question or prove a hypothesis. It is the process used among all scientific disciplines and is used to conduct both small and large experiments. It has been used for centuries to solve scientific problems and identify solutions.

  20. Falsifiability

    Here are two black swans, but even with no black swans to possibly falsify it, "All swans are white" would still be shown falsifiable by "Here is a black swan"—a black swan would still be a state of affairs, only an imaginary one. [A]Falsifiability (or refutability) is a deductive standard of evaluation of scientific theories and hypotheses, introduced by the philosopher of science Karl ...

  21. How to write an introduction section of a scientific article?

    Keywords: Article, introduction, scientific. Introduction. When entering a gate of a magnificent city we can make a prediction about the splendor, pomposity, history, and civilization we will encounter in the city. Occasionally, gates do not give even a glimpse of the city, and it can mislead the visitors about inner sections of the city.

  22. Scientific Method: The Secrets Of Our Circadian Rhythms

    Scientific Method: The Secrets Of Our Circadian Rhythms : 1A If you've ever travelled to a different time zone, you probably felt groggy and tired after your flight. Or you've likely missed that ...

  23. Long-term snow-track indices of a Finnish native mesopredator ...

    Scientific Reports - Long-term snow-track indices of a Finnish native mesopredator declined while those of an invasive one increased ... but for the badger snow-track surveys are a poor method for ...

  24. Scientific Method

    Often, 'the scientific method' is presented in textbooks and educational web pages as a fixed four or five step procedure starting from observations and description of a phenomenon and progressing over formulation of a hypothesis which explains the phenomenon, designing and conducting experiments to test the hypothesis, analyzing the ...